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Abstract

Multimodal named entity recognition (MNER) is a critical
step in information extraction, which aims to detect entity
spans and classify them to corresponding entity types given
a sentence-image pair. Existing methods either (1) obtain
named entities with coarse-grained visual clues from atten-
tion mechanisms, or (2) first detect fine-grained visual re-
gions with toolkits and then recognize named entities. How-
ever, they suffer from improper alignment between entity
types and visual regions or error propagation in the two-
stage manner, which finally imports irrelevant visual informa-
tion into texts. In this paper, we propose a novel end-to-end
framework named MNER-QG that can simultaneously per-
form MRC-based multimodal named entity recognition and
query grounding. Specifically, with the assistance of queries,
MNER-QG can provide prior knowledge of entity types and
visual regions, and further enhance representations of both
text and image. To conduct the query grounding task, we pro-
vide manual annotations and weak supervisions that are ob-
tained via training a highly flexible visual grounding model
with transfer learning. We conduct extensive experiments on
two public MNER datasets, Twitter2015 and Twitter2017.
Experimental results show that MNER-QG outperforms the
current state-of-the-art models on the MNER task, and also
improves the query grounding performance.

Introduction
Multimodal named entity recognition (MNER) is a vision-
language task that extends the traditional text-based NER
and alleviates ambiguity in natural languages by taking im-
ages as additional inputs. The essence of MNER is to effec-
tively capture visual features corresponding to entity spans
and incorporate certain visual regions into textual represen-
tations.

Existing MNER datasets contain few fine-grained anno-
tations in each sentence-image pair, i.e., the relevant image
is given as a whole without regional signals for a particular
entity type. Therefore, previous works implicitly align con-
tents inside a sentence-image pair and fuse their representa-
tions based on various attention mechanisms (Moon, Neves,
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Figure 1: Two examples of MNER-QG with entity type
“ORG”, “PER”, and “OTHER”.

and Carvalho 2018; Lu et al. 2018; Zhang et al. 2018; Ar-
shad et al. 2019; Yu et al. 2020; Chen et al. 2021a; Xu et al.
2022). However, it is hard to interpret and evaluate the effec-
tiveness of implicit alignments. Recently, visual grounding
toolkits (Yang et al. 2019) are exploited to explicitly extract
visual regions related to different entity types (Zhang et al.
2021). The detected regions are then bound with the input
sentence and fed into the recognition model together (Jia
et al. 2022c). Because of the two-stage manner, incorporat-
ing inaccurate visual regions from the first stage will hurt the
final results (error propagation).

With respect to the problem formalization, early methods
regard MNER as a sequence labeling task that integrates im-
age embeddings into a sequence labeling model and assigns
type labels to named entities. Recently, the machine reading
comprehension (MRC) framework is employed in many nat-
ural language processing tasks due to its solid language un-
derstanding capability (Li et al. 2019a,b; Chen et al. 2021b).
To take advantage of the prior knowledge encoded in MRC
queries (Li et al. 2019a), we consider MNER as a MRC
task, which extracts entity spans by answering queries about
entity types. In addition, to capture the fine-grained align-
ment between entity types and visual regions, we ground
the MRC queries on image regions and output their posi-
tions as bounding boxes. For example, as shown in Figure 1
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(a), recognizing entities with type PER and ORG in sentence
“Got to meet my favorite defensive player in the NFL today.
Thank you @ Jurrellc for coming out today!” is formalized
as extracting answer spans from the input sentence given
the query “Person: People’s name...” and “Organization: In-
clude club...”. Then, answer spans “Jurrellc” and “NFL” are
obtained along with their visual regions marked by red and
yellow boxes.

To this end, we propose an end-to-end MRC frame-
work for Multimodal Named Entity Recognition with
Query Grounding (MNER-QG). This joint-training ap-
proach forces the model to explicitly align entity spans with
the corresponding visual regions, and further improves the
performance of both named entity recognition and query
grounding. Specifically, we design unified queries with
prior information as navigators to pilot our joint-training
model. Meanwhile, we extract multi-scale visual features
and design two interaction mechanisms, multi-scale cross-
modality interaction and existence-aware uni-modality in-
teraction, to enrich both textual and visual information.
Since there are few fine-grained annotations for visual re-
gions in existing MNER datasets, we provide two types
of bounding box annotations, weak supervisions and man-
ual annotations. The former is obtained by training a visual
grounding model with transfer learning, while the latter aims
to provide oracle results.

In summary, the contribution of this paper is three-fold:

• We propose a novel end-to-end MRC framework,
MNER-QG. Our model simultaneously performs MRC-
based multimodal named entity recognition and query
grounding in a joint-training manner. To the best of our
knowledge, this is the first attempt on MNER.

• To fulfill the end-to-end training, we contribute weak su-
pervisions via training a visual grounding model with
transfer learning. Meanwhile, we offer manual annota-
tions of bounding boxes as oracle results.

• We conduct extensive experiments on two public MNER
datasets, Twitter2015 and Twitter2017, to evaluate the
performance of our framework. Experimental results
show that MNER-QG outperforms the current state-of-
the-art models on both datasets for MNER, and also im-
proves the QG performance.

Related Work
Multimodal Named Entity Recognition
With the increasing popularity of multimodal data on so-
cial media platforms, multimodal named entity recognition
(MNER) has become an important research direction, which
assists the NER models (Li et al. 2021b,a, 2022) in better
identifying entities by taking images as the auxiliary input.
The critical challenge of MNER is how to align and fuse
textual and visual information. Yu et al. (2020) proposed a
multimodal transformer architecture for MNER, which cap-
tures expressive text-image representations by incorporating
the auxiliary entity span detection. Zhang et al. (2021) cre-
ated the graph connection between textual words and visual
objects acquired by a visual grounding toolkit (Yang et al.

2019), and proposed a graph fusion approach to conduct
graph encoding. Xu et al. (2022) proposed a matching and
alignment framework for MNER to improve the consistency
of representations in different modalities.

Lacking prior information of entity types and accurate an-
notations of visual regions corresponding to certain entity
types, the above methods feed visual information (an en-
tire image, image patches, or retrieved visual regions from
toolkits) with the entire sentence into an entity recognition
model, which inevitably makes it difficult to obtain the ex-
plicit alignment between images and texts.

Machine Reading Comprehension
Machine Reading Comprehension (MRC) aims to answer
natural language queries given a set of contexts where the
answers to these queries can be inferred. In various forms
of MRC, span extraction MRC (Peng et al. 2021; Jia et al.
2022a) is challenging, which extracts a span as the answer
from context. The span extraction can be regarded as two
multi-class classification or two binary classification tasks.
For the former, the model needs to predict the start and end
positions of an answer. For the latter, the model needs to de-
cide whether each token is the start/end position. Recurrent
Neural Network (RNN) was used to encode textual informa-
tion, then a linear projection layer was adopted to predict an-
swer spans (Yang et al. 2018; Nishida et al. 2019). The per-
formance was boosted with the development of large-scale
pre-trained models (Qiu et al. 2019; Tu et al. 2020), such as
ELMo (Peters et al. 2018), BERT (Devlin et al. 2019), and
RoBERTa (Liu et al. 2019).

Recently, there is a trend of converting NLP tasks to the
MRC form, including named entity recognition (Li et al.
2019a), entity relation extraction (Li et al. 2019b), and sen-
timent analysis (Chen et al. 2021b). Due to the powerful
understanding ability contained in MRC, the model perfor-
mance of these tasks is improved.

Visual Grounding
Visual grounding aims to localize textual entities or refer-
ring expressions in an image. This task is divided into two
paradigms: two-stage and one-stage. For the former, the first
stage is exploited to extract region proposals as candidates
via some region proposal methods (e.g., Edgebox (Zitnick
and Dollár 2014), selective search (Uijlings et al. 2013),
and Region Proposal Networks (Ren et al. 2015)), and then
the second stage is designed to rank region-text candidate
pairs. For the latter, researchers utilize one-stage model (e.g.,
YOLO (Redmon et al. 2016; Redmon and Farhadi 2018;
Bochkovskiy, Wang, and Liao 2020)) combined with extra
features to directly output the final region(s). Compared with
the two-stage manner, the one-stage framework is simplified
and accelerates the inference by conducting detection and
matching simultaneously.

To connect visual grounding and MRC-based named en-
tity recognition effectively, we use queries from MRC as in-
put texts and force model to perform query grounding. Since
queries contain the prior knowledge of entity types, our work
can achieve the explicit alignment between entity types and
visual regions.
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Figure 2: Overview of our MNER-QG framework (M-s Fusion denotes Multi-scale Fusion).

Method
Overview
Figure 2 illustrates the overall architecture of MNER-QG.
Given a sentence S = {s0, s1, ..., sn−1} and its associated
image V , where n denotes the sentence length, we first de-
sign a natural language query Q = {q0, q1, ..., qm−1} with
prior awareness about entity types. Then, our model per-
forms multi-scale cross-modality interaction and existence-
aware uni-modal interaction to simultaneously detect entity
spans sstart,end and the corresponding visual regions via an-
swering the query Q.

Query Construction
Query plays a significant role as the navigator in our MNER-
QG, and it should be expressed as generic, precise, and ef-
fective as possible. Table 1 shows examples of queries de-
signed by us. We hope that the queries are moderate in diffi-
culty and can provide informative knowledge of MNER and
QG tasks. Therefore, the model can stimulate the solid un-
derstanding capability of MRC without limiting the perfor-
mance of QG.

Entity Type Natural Language Query
PER (Person) Person: People’s name and fictional

character.

LOC (Location) Location: Country, city, town continent
by geographical location.

ORG (Organization)
Organization: Include club, company,
government party, school government,
and news organization.

Table 1: Examples of transforming entity types to queries.

Model Architecture
Input Representation. For text information, we concate-
nate a query and sentence pair {[CLS], Q, [SEP], S, [SEP]},

and encode the result to a 768D real-valued vector with the
pre-trained BERT model (Devlin et al. 2019), where [CLS]
and [SEP] are special tokens. Then BERT outputs a contex-
tual representation H ∈ Rc×dc , where c = m + n + 3 is
the length of BERT input, dc = 768. For visual information,
inspired by Yang et al. (2019), we use Darknet-53 (Zhu et al.
2016) with feature pyramid networks (Lin et al. 2017) to ex-
tract visual features. The images are resized to 256 × 256,
and the feature maps are 1

32 , 1
16 , and 1

8 , respectively. There-
fore, the three spatial resolutions are 8×8×d1, 16×16×d2,
and 32×32×d3, where d1 = 1024, d2 = 512, and d3 = 256
are feature channels.

We unify the dimensions of three visual features and tex-
tual feature to facilitate the model computation. Specifically,
we add a 1 × 1 convolution layer with batch normaliza-
tion and RELU under the feature pyramid networks to map
the feature channels d1, d2, and d3 to the same dimension
d = 512. The new visual features are denoted as U1, U2,
and U3. At the same time, we flatten 8 × 8, 16 × 16, and
32 × 32 to 64, 256, and 1024, which are used to generate
the visual representations, Uf

1 , Uf
2 and Uf

3 . For textual in-
formation, we use a linear projection to map dc to d = 512,
and the mapped representation is H

′
.

Multi-scale Cross-modality Interaction. This module is
shown in Figure 2 with the grey box. We first truncate the
token-level representations of query Q from H

′
. The query

encoding now contains messages from the original sentence
S, which can be passed to the QG task. Then, we use an
attention-based approach (Rei and Søgaard 2019) to acquire
the summarized query representation q ∈ R1×d that will be
fed into QG.

α = softmax (MLP (Q)) , q =
m−1∑
k=0

αkQ [k, :] (1)

To fully exploit image information, we employ multi-
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scale visual representations to update textual representation
through a cross-modality attention mechanism, where H

′

works as the query matrix, while each of Uf
1 , Uf

2 , and Uf
3

works as the key and value matrix. The visual-enhanced at-
tention outputs are denoted as H1, H2, and H3 ∈ Rc×d.
Then, we merge these matrices to a unified textual repre-
sentation Ha using MeanPooling. Finally, we concatenate
Ha and H

′
, and feed the result into a feed-forward neural

network to get the final textual representation Hu.

Existence-aware Uni-modality Interaction. Since the
sentence does not always contain the entity asked by the cur-
rent query, we design a global existence signal to enhance
the model’s awareness of entity existence. Similar to Equa-
tion (1), we summarize contextual representation H

′
to ac-

quire the existence representation Hg ∈ R1×d. Inspired by
Qin et al. (2021) and Li et al. (2021b), we then employ a
label attention network to update both the textual represen-
tation with the encoding of start/end label and the existence
representation with the encoding of existence label. (Note
that the el in Figure 2 denotes a label embedding lookup
table). Details of the label attention network are provided
in the Appendix1. Then, we get start/end label-enhanced
textual representation, Hs/He, which can be regarded as
the start/end representation of entity span, and also label-
enhanced existence representation Ĥg .

We calculate attention scores between Hs and Ĥg , where
Hs works as the query matrix, while Ĥg works as the key
and value matrix, and define the existence-aware start repre-
sentation H̃s as follows:

Zs = softmax

(
QsK

⊤
g√

dk

)
Vg, H̃s = LN(Hs + Zs) ,

(2)
where LN denotes the layer normalization function (Ba,
Kiros, and Hinton 2016), Qs ∈ Rc×d, Kg,Vg ∈ R1×d,
and H̃s ∈ Rc×d. Similarly, we can obtain the updated end
representation H̃e ∈ Rc×d, and the updated existence repre-
sentation H̃g ∈ R1×d.

Query Grounding
Following Yang et al. (2019), we first broadcast the query
representation q to each spatial location, denoted as (i, j),
and then concatenate the query feature and visual feature
Ui, where i = 1, 2, 3. The feature dimension after concate-
nation is 512+512 = 1024. Another 1×1 convolution layer
is appended to better fuse above features at each location in-
dependently and map them to the dimension d = 512.

Next, we perform the grounding operation. There are
8×8+16×16+32×32 = 1344 locations in three spatial res-
olutions, and each location is related to a 512D feature vec-
tor from the fusion layer. YOLOv3 network centers around
each of the location’s three anchor boxes, hence it predicts
bounding boxes at three scales. The output of YOLOv3 net-
work is [3× (4 + 1)]× ri × ri at each scale for shifting the

1The appendix will be released at: https://github.com/jmhz24/
MNER-QG.

center, width, and height (tx, ty, tw, th) of the anchor box,
along with the confidence score conf on this shifted box,
where ri × ri denotes the shape size of each spatial resolu-
tion. Ultimately, only one region is desired as the output for
query grounding. More details can be found in Yang et al.
(2019).

The objective function LQG of QG task consists of re-
gression loss on bounding box Lbbox and object score loss
Lobject. Lbbox is expected to assign bounding box regions to
ground truth objects via mean squared error (MSE). Lobject

is used to classify the bounding box regions as object or non-
object via binary cross-entropy (BCE).

Multimodal Named Entity Recognition
The core of multimodal named entity recognition is to pre-
dict the entity span in sentence. In this section, we design
an auxiliary task named existence detection (ED) after re-
ceiving the existence representation H̃g to predict whether
a sentence contains entities with specific type and cooperate
with the entity span prediction task to extract entity span.

Existence Detection. This task and the entity span pre-
diction task can share the corresponding mutual information
with the co-interactive attention mechanism. The existence
of entity is detected as follows:

Pexist = softmax
(
H̃gWexist

)
(3)

where Wexist ∈ Rd×2 and Pexist ∈ R1×2. We formulate
the ED sub-task as a text classification task. The loss func-
tion is denoted by LED and the binary cross-entropy (BCE)
loss is taken as the training objective.

Entity Span Prediction. To tag the entity span from a sen-
tence using MRC framework, it is necessary to find the start
and end positions of the entity. We utilize two binary clas-
sifiers to predict whether each token in the sentence is the
start/end index or not, respectively. The probability that each
token is predicted to be a start position is as follows:

Pstart = softmaxeachrow

(
H̃sWs

)
(4)

where Ws ∈ Rd×2 and Pstart ∈ Rc×2. Similarly, we can
get the probability of the end position Pend ∈ Rc×2.

Since there could be multiple entities of the same type in
the sentence, we add a binary classification model to predict
the matching probability of start and end positions inspired
by Li et al. (2019a).

Pmatch = sigmoid
(
Wm

[
H̃s; H̃e

])
(5)

where Wm ∈ R1×2d, Pmatch ∈ R1×2. [; ] is denoted the
concatenation in columns.

During training, the objective function LESP of entity
span prediction (ESP) sub-task consists of start position loss
Lstart, end position loss Lend and matching loss Lmatch,
where binary cross-entropy (BCE) is used for calculation.

Finally, combining the two tasks QG and MNER, the
overall objective function is as follows:

L = ωfLQG + λ1LED + λ2LESP (6)
where ωf , λ2 and λ3 are hyper-parameters to control the
contributions of each sub-task.
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Experiments
Dataset Construction
There are two widely-used MNER datasets, Twitter2015
(Zhang et al. 2018) and Twitter2017 (Lu et al. 2018), used
to evaluate the effectiveness of our framework. Both datasets
are separated into training, validation, and test sets with the
same type distribution. Statistics are listed in Appendix. And
then, we contribute two types of labels: weak supervisions
and manual annotations for public research.

For weak supervisions, we apply the pre-trained fast and
accurate one-stage visual grounding model (Yang et al.
2019) (denoted as FA-VG) as the base model. In the set-
ting of Phrase Localization task, FA-VG was trained and
evaluated on the Flickr30K Entities dataset (Plummer et al.
2015) that augments the original Flickr30K (Young et al.
2014) with region-phrase correspondence annotations. How-
ever, there are two obstacles: (1) These phrases/queries are
from image captions, and not specially constructed for the
named entity recognition task. (2) The MNER datasets (i.e.
Twitter2015/2017) have different data domains compared
with the Flickr30K Entities dataset. Thus, we utilize trans-
fer learning to overcome above issues. In addition, we con-
tribute manual annotations for public research. We hire three
crowd-sourced workers who are familiar with the tasks of
MNER and object detection to help us annotate the bound-
ing box in the image. The annotators are requested to tag
the visual regions in the image corresponding to the entity
span in the sentence. After the data annotation, we merge
the instances of strong inter-annotator agreement from three
crowd-sourced workers to acquire high-quality and explicit
text-image alignment data (Chen et al. 2019; Jia et al.
2022b). Details of the annotation with two types of labels
are provided in the Appendix.

Experiment Settings
Evaluation Metrics. For the MNER task, we use preci-
sion (Pre.), recall (Rec.), and F1 score (F1) to evaluate
the performance of overall entity types, and use F1 only for
each type. For the QG, we follow prior works (Rohrbach
et al. 2016) and utilize Accu@0.5 as evaluation protocol.
Given a query, an output image region is considered correct
if its IoU is at least 0.5 with the ground truth bounding box.
In addition, we add Accu@0.75 (IoU is at least 0.75) and
Miou (mean of IoU) as additional evaluation metrics.

Implementation Details. The learning rate and dropout
rate are set to 5e-5 and 0.3, which obtains the best perfor-
mance on the validation set of two datasets after conducting
a grid search over the interval [1e-5, 1e-4] and [0.1, 0.6].
We train the model with AdamW optimization. To further
evaluate our joint-training model, we take out the images
from Twitter2015/2017 to train the QG model separately.
For a fair comparison, we use the same configurations such
as batch size, learning rate, and optimizer in both the QG
model and our joint-training model. For the joint-training
loss, we set the hyper-parameters λ1 = 1 and λ2 = 2 by
tuning on the validation set. We specially set a balance factor
ωf to dynamically scale the loss of MNER and QG. Please
refer to Appendix for more details.

Baseline Models. Two groups of baselines are compared
with our approach. The first group consists of some text-
based MNER models that formalize MNER as a sequence
labeling task: (1) BiLSTM-CRF (Huang, Xu, and Yu
2015); (2) CNN-BiLSTM-CRF (Ma and Hovy 2016); (3)
HBiLSTM-CRF (Lample et al. 2016); (4) BERT (De-
vlin et al. 2019); (5) BERT-CRF; (6) T-NER (Ritter et al.
2011; Zhang et al. 2018). The second group contains several
competitive MNER models: (1) GVATT-HBiLSTM-CRF
(Lu et al. 2018); (2) GVATT-BERT-CRF (Yu et al. 2020);
(3) AdaCAN-CNN-BiLSTM-CRF (Zhang et al. 2018); (4)
AdaCAN-BERT-CRF (Yu et al. 2020); (5) UMT-BERT-
CRF (Yu et al. 2020); (6) MT-BERT-CRF (Yu et al. 2020);
(7) ATTR-MMKG-MNER (Chen et al. 2021a); (8) UMGF
(Zhang et al. 2021); (9) MAF (Xu et al. 2022). The details
of these models are illustrated in Appendix.

According to different derivations of bounding box la-
bels in the images, we provide two versions of our model
MNER-QG and MNER-QG (Oracle) for evaluation. In ad-
dition, we provide a variant of the model, MNER-QG-Text,
which uses text input only.

Main Results
Table 2 shows the results of our model and baselines. The
upper results are from text-based models and the lower
results are from multimodal models. Firstly, we compare
the multimodal models with their corresponding uni-modal
baselines in MNER, such as AdaCAN-CNN-BiLSTM-CRF
vs. CNN-BiLSTM-CRF, and MNER-QG vs. MNER-QG-
Text. We notice almost all multimodal models can signifi-
cantly outperform their corresponding uni-modal competi-
tors, indicating the effectiveness of images. And then, we
compare our MNER-QG with other multimodal baselines.
The result shows MNER-QG outperforms all baselines on
Twitter2017 and yields competitive results on Twitter2015.
MNER-QG (Oracle) with more accurate manual annotations
yields further results in both datasets.

Ablation Study
Table 3 shows the ablation results. We observe that all sub-
tasks are necessary. First, after removing the QG loss, the
performance noticeably drops on all metrics. In particular,
F1 scores on two datasets degrade by 0.71% and 0.62%,
respectively. The result shows the QG training promotes ex-
plicit alignment between text and image. Besides, removing
the ED loss also damages the performance on all metrics. F1
scores on the two datasets decrease by 0.47% and 0.41%, re-
spectively. We conjecture that ED provides global informa-
tion for the entire model, which can help the model deter-
mine whether the sentence contains certain entities asked by
the query. Finally, after removing both QG and ED loss, the
performance degrades significantly, indicating that both the
QG and ED tasks are essential in our framework.

Case Study
Here we conduct further qualitative analysis with two spe-
cific examples. We compare the results from MNER-QG,
MNER-QG (Oracle), and the competitive model UMGF.
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Methods
Twitter2015 Twitter2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG OTH. Pre. Rec. F1 PER LOC ORG OTH. Pre. Rec. F1

BiLSTM-CRF 76.77 72.56 41.33 26.80 68.14 61.09 64.42 85.12 72.68 72.50 52.56 79.42 73.43 76.31
CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37

HBiLSTM-CRF 82.34 76.83 51.59 32.52 70.32 68.05 69.17 87.91 78.57 76.67 59.32 82.69 78.16 80.37
BERT 84.72 79.91 58.26 38.81 68.30 74.61 71.32 90.88 84.00 79.25 61.63 82.19 83.72 82.95

BERT-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44
T-NER 83.64 76.18 59.26 34.56 69.54 68.65 69.09 - - - - - - -

MNER-QG-Text (Ours) 84.72 81.13 60.07 39.23 76.35 69.46 72.74 91.33 85.23 81.75 68.41 87.12 84.03 85.55
GVATT-HBiLSTM-CRF 82.66 77.21 55.06 35.25 73.96 67.90 70.80 89.34 78.53 79.12 62.21 83.41 80.38 81.87

AdaCAN-CNN-BiLSTM-CRF 81.98 78.95 53.07 34.02 72.75 68.74 70.69 89.63 77.46 79.24 62.77 84.16 80.24 82.15
GVATT-BERT-CRF 84.43 80.87 59.02 38.14 69.15 74.46 71.70 90.94 83.52 81.91 62.75 83.64 84.38 84.01

AdaCAN-BERT-CRF 85.28 80.64 59.39 38.88 69.87 74.59 72.15 90.20 82.97 82.67 64.83 85.13 83.20 84.10
MT-BERT-CRF 85.30 81.21 61.10 37.97 70.84 74.80 72.58 91.47 82.05 81.84 65.80 84.60 84.16 84.42

UMT-BERT-CRF 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31
ATTR-MMKG-MNER 84.28 79.43 58.97 41.47 74.78 71.82 73.27 - - - - - - -

UMGF 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51
MAF 84.67 81.18 63.35 41.82 71.86 75.10 73.42 91.51 85.80 85.10 68.79 86.13 86.38 86.25

MNER-QG (Ours) 85.31 81.65 63.41 41.32 77.43 72.15 74.70 92.92 86.19 84.52 71.67 88.26 85.65 86.94
MNER-QG (Oracle) (Ours) 85.68 81.42 63.62 41.53 77.76 72.31 74.94 93.17 86.02 84.64 71.83 88.57 85.96 87.25

Table 2: Results on two MNER datasets. We refer to the results of UMGF from Zhang et al. (2021) and other results from Xu
et al. (2022). Our model achieves a statistically significant improvement with p-value<0.05 under a paired two-sided t-test.

Methods Twitter2015 Twitter2017
Pre. Rec. F1 Pre. Rec. F1

MNER-QG 77.43 72.15 74.70 88.26 85.65 86.94
- w/o QG loss 77.50 70.79 73.99 88.01 84.69 86.32
- w/o ED loss 77.53 71.20 74.23 87.81 85.28 86.53
- w/o QG+ED loss 77.17 70.29 73.57 87.63 84.47 86.02

Table 3: Ablation study of MNER-QG on test set.

In Figure 3 (a), the sentence contains two entities “lebron
james”, and “Cavaliers” with PER, and ORG types respec-
tively. However, UMGF locates the entity “lebron james”
inaccurately and misjudges its type. We guess it is because
UMGF cannot detect the region of person on the red T-shirt.
Instead, both MNER-QG and MNER-QG (Oracle) extract
region about “lebron james” (red box) for PER, and the logo
about “Cavaliers” (yellow box) for ORG on clothing, and
the regions extracted by MNER-QG (Oracle) are more ac-
curate due to the more elaborate manual annotations. Com-
pared with UMGF, our model can locate more relevant vi-
sual regions, which can assist the model on accurately recog-
nizing entities. Figure 3 (b) shows a more challenging case,
where the image cannot provide useful regions about LOC.
It can be seen that UMGF, MNER-QG and MNER-QG (Or-
acle) cannot locate the relevant visual regions for this en-
tity. However, both MNER-QG and MNER-QG (Oracle) can
recognize “Epcot” and its type. We conjecture that the solid
understanding capability of MRC and the guidance of query
prior information contribute to the final correct prediction.

Discussions
Effectiveness of the End-to-End Manner. Table 4 shows
the results of our joint-training approach with other single-
training approaches on different tasks. MNER-VG is a two-
stage MNER model, which uses the VG model trained via
transfer learning to acquire visual region in the first stage
and integrates it into the second stage to enhance token rep-

resentation. FA-VG is a one-stage VG model, and we re-
train the model using Twitter2015/2017 datasets. As can be
seen, compared with models MNER-QG-Text and FA-VG
trained on a single data source (e.g., text or image) in dif-
ferent tasks, our joint-training model significantly improves
the performance of each task, e.g., F1 score and Accu@0.5
are improved by 1.96% and 3.1% (max:4.03%), respec-
tively in Twitter2015. Compared with the two-stage model
MNER-VG, our end-to-end model still has obvious advan-
tages, e.g., F1 scores are increased by 0.76% and 0.91%
in Twitter2015/2017, respectively. The above results indi-
cate that the different tasks in our model are complementary
with each other under an end-to-end manner and enable the
model to yield better performance.

Accuracy of QG. To check the quality of the labels con-
tributed by us for the QG, we present the results of the dif-
ferent models trained with two types of labels. In addition,
we provide the result on a high-quality Flickr30K Entities
dataset for comparison. The dataset links 31,783 images in
Flickr30K with 427K referred entities. Table 5 illustrates
that for either MNER-QG or FA-VG, training with man-
ual annotations outperforms that with weak supervisions.
But the acquisition of weak supervisions is cost-effective
and time-efficient. Regardless of the annotation method, our
joint-training MNER-QG significantly improves the perfor-
mance compared with single-training FA-VG on QG task.
Compared with the results of FA-VG on Flickr30K Entities,
the results on Twitter2015/2017 are competitive. In partic-
ular, Accu@0.5 in Twitter2017 with manual annotations is
2.33% higher than the result in Flickr30K Entities2. The re-
sults indicate two types of labels on Twitter2015/2017 for
QG are reliable and leave ample scope for future research.

2There are great deviations in the number of images and the
distribution of data in Twitter2015/2017 and Flickr30K Entities,
and the comparison of the three datasets is shown in the Appendix.
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Figure 3: Example comparison among MNER-QG, MNER-QG (Oracle), and UMGF.

Methods
Twitter2015 Twitter2017

MNER QG MNER QG
Pre. Rec. F1 Accu@0.5 Accu@0.75 Miou Pre. Rec. F1 Accu@0.5 Accu@0.75 Miou

MNER-QG-Text 76.35 69.46 72.74 - - - 87.12 84.03 85.55 - - -
MNER-VG 77.03 71.08 73.94 - - - 87.91 84.22 86.03 - - -

FA-VG - - - 50.83 32.69 45.49 - - - 56.03 38.92 51.14

MNER-QG (Ours) 77.43 72.15 74.70 53.93
(M:54.86)

40.22
(M:41.13)

49.50
(M:50.41) 88.26 85.65 86.94 57.50

(M:58.49)
43.03

(M:43.67)
54.09

(M:55.3)

Table 4: Performance comparison of joint-training and single-training models on test set. Note that two results were provided
for the QG task, one is the QG results when MNER reaches the optimum, and the other is the optimal results in the QG task.
(M denotes Max).

Methods
Twitter2015 Twitter2017 Flickr30K(W.S) (M.A) (W.S) (M.A)

A@0.5 A@0.5 A@0.5 A@0.5 A@0.5
FA-VG 50.83 63.94 56.03 71.02 68.69

MNER-QG (Ours) 54.86 67.41 58.49 73.53 -

Table 5: Results on different bounding box labels on test set
(W.S and M.A denote weak supervisions and manual anno-
tations, respectively. A@0.5 is Accu@0.5. The result of FA-
VG on Flickr30K derives from Yang et al. (2019).)

Effect of Query Transformations. We explore different
ways of query transformations and take entity type ORG as
example for illustration. 1) Keyword: An entity type key-
word. e.g.,“Organization”. 2) Rule-based Template Filling:
Phrases generated by a simple template. e.g.,“Please find Or-
ganization”. 3) Keyword’s Wikipedia: The definition of the
entity type keyword from Wikipedia. e.g.,“An organization
is an entity, such as an institution or an association, that has a
collective goal and is linked to an external environment.” 4)
Keyword+Annotation: The concatenation of a keyword and
its annotation. e.g.,“Organization: Include club, company,
government party, school...”. Results are shown in Figure 4.
Queries designed by methods 1 and 2 contain insufficient in-
formation, which results in friendly QG result but limits the
language understanding of MRC. For method 3, definitions
from Wikipedia are relatively general, leading to inferior re-
sults on both tasks. Compared with other methods, method 4
achieves the highest F1 score and Accu@0.5 in both tasks.
We conjecture that method 4 contains generic and precise
knowledge of certain types, which accords with the require-

ments for query construction.

Figure 4: Results with different query transformations in
MNER and QG on validation set (K, R-b, K’s W, and K+A
correspond to methods 1-4 of query transformations).

Conclusion and Future Work
In this work, we propose MNER-QG, an end-to-end MRC
framework for MNER with QG. Our model provides prior
knowledge of entity types and visual regions with the
guidance of queries, then enhances representations of both
texts and images after the interactions of multi-scale cross-
modality and existence-aware uni-modality, at last, simul-
taneously extracts entity span and grounds the queries onto
visual regions of the image. To perform the query ground-
ing task, we contribute weak supervisions and manual an-
notations. Experimental results on two datasets show that
the joint-training model MNER-QG competes strongly with
other baselines in different tasks. MNER-QG leaves ample
scope for further research. For future work, we will explore
more effective multimodal interaction approaches.
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