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ABSTRACT
The legal charge prediction task aims to judge appropriate charges
according to the given fact description in cases. Most existing meth-
ods formulate it as a multi-class text classification problem and
have achieved tremendous progress. However, the performance
on low-frequency charges is still unsatisfactory. Previous studies
indicate leveraging the charge label information can facilitate this
task, but the approaches to utilizing the label information are not
fully explored. In this paper, inspired by the vision-language infor-
mation fusion techniques in the multi-modal field, we propose a
novel model (denoted as LeapBank) by fusing the representations of
text and labels to enhance the legal charge prediction task. Specifi-
cally, we devise a representation fusion block based on the bilinear
attention network to interact the labels and text tokens seamlessly.
Extensive experiments are conducted on three real-world datasets
to compare our proposed method with state-of-the-art models. Ex-
perimental results show that LeapBank obtains up to 8.5% Macro-F1
improvements on the low-frequency charges, demonstrating our
model’s superiority and competitiveness.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
• Applied computing → Law.
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1 INTRODUCTION
Legal Artificial Intelligence (LegalAI) [57] aims to help legal tasks
with artificial intelligence technology and has become a trendy
research field. Charge prediction is one of the critical problem in
LegalAI. Given the fact description of cases, charge prediction tries
to predict the judgment results (e.g., fraud, theft, or homicide) of
legal cases by analyzing law documents, which has significant value
for assisting lawyers on real-world legal judgment. For example, it
can reduce redundant work for legal experts, and it can also provide
legal consulting services for ordinary people who are unfamiliar
with legal terminology. Most existing works usually treat legal
charge prediction as a multi-class text classification problem.
Early models involve feature engineering [11, 19–21, 23, 40], which
rely on hand-crafted features such as Bag-of-words, TF-IDF, and
n-grams to represent the text. The effectiveness of these models
is primarily limited by feature extraction. Recently, neural models
have been employed progressively in this task because of their
superiority in learning distributed text representations [6, 8, 17, 26,
55] and remarkable progress has been made.

Unlike the common text classification problem, there are several
particularities for legal charge prediction. In real-world scenarios,
the number of charges is usually large (hundreds of labels). The
distribution of charges is exceptionally imbalanced, especially the
long-tail charges with limited cases tend to be numerous. Taking
a real-world dataset1 for example, according to previous statistics
[17], there is a total of 149 charges. However, the top 10 major-
ity charges (e.g., theft, intentional injury) cover 77.8% cases. In
comparison, the top 50 minority charges (e.g., reselling artifacts,
tax-escaping) only cover less than 0.5% cases, and most of them
even contain less than 10 cases, which brings great challenges for
the classifier.

Intuitively, when professional lawyers make the legal judgement,
they not only look at the text of fact description, but also need to
understand the semantic meanings of each charge label. By com-
bining the information of both sides organically, the understanding
becomes more thorough. Previous studies [4, 24, 46, 47] also point
out leveraging the linguistic knowledge of charge labels can facili-
tate this task. The charges in the legal area are usually well-defined,
and each charge label can be treated as an accurate and refined
description [24]. Then, the informative charge labels can potentially
guide the model to focus on the most salient information in the fact

1The dataset was published by China Judgments Online, and can be downloaded from:
https://thunlp.oss-cn-qingdao.aliyuncs.com/attribute_charge.zip
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Figure 1: Legal charge prediction by fusing the representa-
tions of text and labels.

description [46]. Most existing methods usually use dot-product
[4, 47] or cosine similarity [46] to obtain the matching scores be-
tween labels and words. However, the rich knowledge of charge
labels have not yet been fully explored.

Therefore, we argue that fusing the information from different
sources (fact description and charge labels) into a single expressive
representation is crucial. As Figure 1 shown, the process can be
analogous to vision-language information fusion in themulti-modal
field. Imagining charge labels as the image regions/objects in the
visual channel and the fact description as the language channel,
the model aims to exploit the fine-grained interactions between
two groups of input channels. Bilinear pooling-based fusion, also
referred to as second-order pooling [43], is a popular method to fuse
visual feature vectors with textual feature vectors to create a joint
representation space by computing their outer product [53], which
facilitates multiplicative interactions between all elements in both
vectors. Compared with simple vector combination (e.g., weighted
sum, element-wise multiplication, or concatenation), bilinear pool-
ing can generate a more expressive representation by linearizing
the matrix from the outer product into a vector. Recently, Bilinear
Attention Networks (BAN) [13] have been proposed and shown
more intriguing properties on exploiting bilinear interactions be-
tween two groups of input channels by combining the advantages
of the bilinear pooling and attention mechanism. By decomposing
the interaction weight matrix into low-rank modality-specific fac-
tors [2, 52], BAN significantly reduces the number of parameters
and improves efficiency. After equipped with attention mechanism,
a bilinear attention map representing an attention distribution is
produced to fuse the vision-language information seamlessly.

Inspired by this, in this paper, we propose a novel model (denoted
as LeapBank), equipped with a Bilinear Attention Fusion (BAF)
block, to catch the fine-grained bilinear interactions and fuse the

information between given fact description and charge labels seam-
lessly. To validate the effectiveness of LeapBank, we experiment on
three public real-world charge prediction datasets, and show that
it outperforms existing baselines and create new state-of-the-art
results. To summarize, the main contributions of this paper are
threefold:
• We propose a novel model (LeapBank) for the legal charge pre-
diction task. Our model devises a bilinear attention fusion block
to utilize given charge-text information seamlessly.

• We conduct extensive experiments to study the performance of
the LeapBank based on three benchmark datasets. The experi-
mental results demonstrate that LeapBank leads to 8.5% points
improvement of Macro-F1 on the low-frequency charges.

• We also verify the universality of our model by experimenting on
a public multi-label legal document classification task. Besides,
more representation fusion methods are also compared to show
the superiority of BAF.

2 PRELIMINARIES
To help understand our proposed model, here we review the evolu-
tion of bilinear models. As a representative approach of information
fusion, bilinear related models provide expressive representations,
and have achieved attractive performance in the multi-modal field
[53]. Given x ∈ R𝑑𝑥 and y ∈ R𝑑𝑦 are two different feature vectors,
bilinear models consider all pairwise interactions among features
through outer product [18]. The formula is as follows:

𝑓𝑖 = x𝑇W𝑖y, (1)

whereW𝑖 ∈ R𝑑𝑥×𝑑𝑦 is a weight matrix for the output 𝑓𝑖 . Please note
for𝐾 output features, the number of parameters ofW is𝐾×𝑑𝑥 ×𝑑𝑦 .

For better regularization, the low-rank bilinear method is intro-
duced to reduce the rank of the weight matrix W𝑖 [36]. It can be
formulated as Equation 2:

𝑓𝑖 = x𝑇W𝑖y ≈ x𝑇U𝑖V𝑇𝑖 y = 1𝑇 (U𝑇
𝑖
x ◦ V𝑇

𝑖
y), (2)

whereW𝑖 is replaced with two smaller matrices U𝑖 ∈ R𝑑𝑥×𝑑 and
V𝑖 ∈ R𝑑𝑦×𝑑 . x ∈ R𝑑𝑥 denotes the textual feature vectors and
y ∈ R𝑑𝑦 represents the visual feature vectors. 𝑑𝑥 and 𝑑𝑦 represent
the dimension of corresponding vectors. 1 ∈ R𝑑 is a vector of ones
and ◦ denotes Hadamard product (element-wise multiplication).

However, for output feature f, the two third-order tensors (U and
V) are still needed. To reduce the number of parameters, Kim et al.
[14] propose low-rank bilinear pooling by introducing a pooling
matrix P, which allowsU andV to be two-order tensors. The formula
is as follows:

f = P𝑇 (U𝑇 x ◦ V𝑇 y) . (3)

Recently, Bilinear Attention Network (BAN) [13] generalizes the
above bilinear models by exploiting bilinear attention maps. BAN
combines the advantage of low-rank bilinear pooling and attention
mechanism, thus has the ability to utilize given vision-language
information to find bilinear attention distributions seamlessly.

Suppose X ∈ R𝑑𝑥×𝑁 denotes the language channel (e.g. words
in question) and Y ∈ R𝑑𝑦×𝑀 represents the vision channel (e.g.
objects in image), where 𝑁 and 𝑀 represent the number of two
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Figure 2: Overview of our model. Fact description and charge labels share the same encoder. E represents the contextual word
embeddings of fact description from pre-trained models. Y denotes the embeddings of charges.

input channels. The 𝑘-th element of intermediate representation is
calculated as follows:

f
′

𝑘
= (X𝑇U

′ )𝑇
𝑘
A(Y𝑇V′ )𝑘 , (4)

where (X𝑇U
′ )𝑘 ∈ R𝑁 and (Y𝑇V′ )𝑘 ∈ R𝑀 . U

′ ∈ R𝑑𝑥×𝑑𝑘 and
V

′ ∈ R𝑑𝑦×𝑑𝑘 are weight matrices. A ∈ R𝑁×𝑀 denotes the bilinear
attention map, which is calculated as follows:

A = softmax(((1 · p𝑇 ) ◦ X𝑇U)V𝑇Y), (5)

where 1 ∈ R𝑁 and p ∈ R𝑑𝑘 . The U ∈ R𝑑𝑥×𝑑𝑘 and V ∈ R𝑑𝑦×𝑑𝑘 are
weight matrices.

3 MODEL
In this section, we introduce our proposed model in detail, which
is illustrated in Figure 2. It takes the fact description and all charge
labels as the input. The output is a predicted charge. The central
idea of LeapBank is to exploit fine-grained interactions between all
charges and the tokens of fact description.

3.1 Shared Encoder for Fact and Charges
Suppose the fact description of a legal case is a word sequence
x = {𝑥1, 𝑥2, ..., 𝑥𝑁 }, where 𝑁 is the length of the sequence. 𝑥𝑖 ∈ 𝑉
is the 𝑖-th word of x, and𝑉 denotes the fixed vocabulary. Usually, a
specific token [CLS] is inserted as the first token. Formally, the input
of fact encoder becomes x = {[𝐶𝐿𝑆], 𝑥1, 𝑥2, ..., 𝑥𝑁 }. Here, we take
the popular pre-trained model BERT [3] as our fact encoder without
loss of generality. Note that it’s not limited to BERT, and other pre-
trained models such as ELMo [35], RoBERTa [22], and XLNet [50]
are also feasible. The input embedding is the sum of static word
embedding, segment embedding, and position embedding. Then,
the input embedding is fed into several Transformer blocks [45] to
produce the contextual word embeddings of fact description. The
formula is as follows:

E = 𝑓fact_enc ( [𝐶𝐿𝑆], 𝑥1, ..., 𝑥𝑁 ), (6)

where E ∈ R(𝑁+1)×𝑑ℎ and 𝑑ℎ is the embedding dimension of to-
kens.

Given all charges 𝐶 = [𝑐1, 𝑐2, ..., 𝑐𝑀 ], the charge encoder maps
each charge label into a dense vector based on its description words.
The c𝑘 = [𝑤𝑘

1 ,𝑤
𝑘
2 , ...,𝑤

𝑘
𝐿
] denotes the 𝑘-th charge in label set.𝑤𝑘

𝑖
indicates the 𝑖-th word of 𝑘-th charge. 𝑀 denotes the number of
charges and 𝐿 represents the maximum length of charge description.
The charge representation Y ∈ R𝑀×𝑑ℎ can be obtained as follows:

y𝑘 = 𝑓charge_enc ( [𝐶𝐿𝑆],𝑤𝑘
1 ,𝑤

𝑘
2 , ...,𝑤

𝑘
𝐿
), (7)

where 𝑘 ∈ [1, 𝑀]. We take the same encoder BERT for charge en-
coding. Each charge label is encoded individually with the shared
encoder, and the vector of [CLS] is taken as the initial representa-
tion of charge embedding. In order to balance the computational
efficiency, we extract the charge embeddings of all charge labels
from the charge encoder in advance.

3.2 Fact-label Fusion Layer
Inspired by the bilinear attention network in multi-modal field [13],
in this paper, we devise a novel Bilinear Attention Fusion (BAF)
block, to capture fine-grained interactions between charge labels
and tokens in fact description.

Given the charge embeddings Y = {y1, y2, ..., y𝑀 } and contex-
tual word embeddings E = {e0, e1, ..., e𝑁 }, we define the bilinear
attention fusion block as a function:

h𝐹 = BAF(E,Y;A), (8)

where h𝐹 is the fused representation, and can be calculated by the
following formulas:

h
′
𝑡 = 𝜎 (EU

′ + b𝑇
𝑢
′ )𝑇𝑡 A𝜎 (YV

′ + b𝑇
𝑣
′ )𝑡 , (9)

h𝐹 = P𝑇 h
′
, (10)

where U
′ ∈ R𝑑ℎ×𝑑𝑘 and V

′ ∈ R𝑑ℎ×𝑑𝑘 are weight matrices. b𝑢′ ∈
R𝑑𝑘 and b𝑣′ ∈ R𝑑𝑘 are bias. h

′
𝑡 denotes the 𝑡-th interaction features.
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The subscript 𝑡 for the matrices indicates the index of column.
So for h

′ ∈ R𝑑𝑘 , there is at most 𝑑𝑘 -rank bilinear pooling. The
pooling matrix P ∈ R𝑑𝑘×𝑑ℎ is used to get the bilinear attention
fusion representation h𝐹 ∈ R𝑑ℎ . The A ∈ R(𝑁+1)×𝑀 is the bilinear
attention matrix, and is calculated as follows:

A = 𝑔(((1 · p𝑇 ) ◦ 𝜎 (EU + b𝑇𝑢 ))𝜎 (V𝑇Y𝑇 + b𝑣)), (11)

where U ∈ R𝑑ℎ×𝑑𝑘 and V ∈ R𝑑ℎ×𝑑𝑘 are weight matrices. b𝑢 ∈
R𝑑𝑘 and b𝑣 ∈ R𝑑𝑘 are bias. 𝜎 is a nonlinear activation function
(e.g. ReLU [31] or Tanh). 1 ∈ R𝑁+1 and p ∈ R𝑑𝑘 . Notice that the
softmax function 𝑔 is applied element-wisely. Besides, we further
improve the vanilla BAN [13] by removing the multi-glimpse and
simplifying the eight attention maps to one, thus BAF is more
parameter-efficient and performance-effective.

3.3 Charge Prediction Layer
The output of the BAF is the fused representation among fact de-
scription and charges. It is combined with the contextual word
embeddings to enhance the representation of fact description. The
final aggregated representation h𝑜 is calculated as follows:

h𝑜 = h𝐷 ⊕ h𝐹 , (12)

where ⊕ denotes the element-wise addition operation, and the h𝐷
is the average of contextual word embeddings E. Then h𝑜 is fed
into a fully connected layer with softmax function to predict the
probability of charges. The objective function is defined as follows:

𝐿charge =
∑
𝑖∈𝐷 CE(𝑝𝑖 , 𝑝𝑖 ), (13)

where 𝑝𝑖 is the predicted label, 𝑝𝑖 is the ground-truth label, 𝐷 is
the number of training samples, and CE(·, ·) is the cross entropy
function.

4 EXPERIMENTS
In this part, we first describe the experimental setup. Then, we
compare our proposed method with more than 10 strong baseline
methods. We also conduct an ablation study to investigate the effec-
tiveness of BAF. Besides, we investigate if LeapBank can improve
the performance of low-frequency charges. Finally, we visualize
the learnt label embeddings to show the advantage of LeapBank.

4.1 Experimental Setup
Datasets. Following prior works [6, 17], we employ three public
datasets1 to validate our proposed model. The datasets are col-
lected from the real world, published by the Chinese government
from China Judgments Online. A legal document is usually well-
structured and includes several parts such as fact description, court
view, and penalty result [8]. The datasets select the fact description
of each legal case as input text. The output label is the charge, which
is extracted from the penalty results by the regular expressions. The
detailed statistics are presented in Table 2. The three datasets are
Criminal-S, Criminal-M, and Criminal-L, which include different
amounts of cases but the same amount of charges.
Evaluation Metrics. Following previous works [8, 17, 26], we
use four metrics commonly used in classification task to evaluate
the performance, including Accuracy (Acc), Macro Precision (MP),

Macro Recall (MR), and Macro-F1 score (F1). For multi-class clas-
sification, the MP, MR, and Macro-F1 are calculated as the macro
average of the above metrics correspondingly by taking all classes
equally important. Therefore, the MP, MR, and Macro-F1 are more
fair to reflect the model’s performance on the imbalanced dataset,
which is exactly the situation in our experiments. Note that theAcc
can only reflect the overall performance, which might be dominated
by the high-frequency charges.
Baselines.We compared LeapBank against a variety of methods,
which can be summarized in following three groups.
• General purpose text classifiers, including feature engineer-
ing method TFIDF-SVM, which takes term-frequency inverse
document frequency (TF-IDF) [39] as features and support vector
machine (SVM) [41] as classifier; mainstream neural structures
such as CNN [15], LSTM [7], and CNN-Capsule [38]; pre-trained
model BERT [3], fine-tuned with one additional fully connected
layer, where input features are generated by averaging all token
representations.

• Label embedding based classifiers, including label-word joint
embedding model LEAM [46], which uses cosine similarity to
get matching scores between words and labels and uses CNN on
the matching matrix to get the label-aware attention to weight
the text representation; EXAM [4], which uses dot-product to get
matching scores between words and labels and aggregates into
predictions; LSAN [47], which uses dot-product to get matching
scores and directly weights the text representation by matching
scores.

• Models tailored for legal charge prediction, including: Fact-
Law Attention Model [26], which jointly models the charge pre-
diction task and the relevant article extraction task; Attribute-
attentive Model [8], which introduces several discriminative at-
tributes of charges to improve the few-shot charges prediction;
HLCP [24], which leverages text information of charges with the
attention-based sequence to sequence model; SECaps [6], which
designs the seq-caps layer and residual attention unit for charge
prediction; and SAttCaps [17], which proposes a self-attentive
capsule network to tackle this task. To our knowledge, SAttCaps
[17] is the state-of-the-art model of this task.

Implementation Details. We use the official Chinese BERT-base
model as the fact encoder. The fact descriptions are processed into
character sequence, and the maximum input sequence length is
set to 512 tokens. The batch-size is set to 16, while the learning
rate is set to 2 × 10−5. Adam optimizer is adopted in our exper-
iments. The best fine-tuning epoch was decided with {3, 4, 5} to
balance the model performance and the time consumption. In ad-
dition, the experimental settings of baselines are as follows. The
hyper-parameter settings of the baseline models are consistent with
the original papers [6, 8] and the results are collected from [17]
except EXAM, LEAM, LSAN and BERT. For EXAM2, LEAM3 and
LSAN4, we keep the same settings as the officially released code
except maximum sequence length is set to 512. As to BERT, we
take the average of contextual word embeddings as final document
representation. Note that we also tried to use the representation

2https://github.com/NonvolatileMemory/AAAI_2019_EXAM
3https://github.com/guoyinwang/LEAM
4https://github.com/EMNLP2019LSAN/LSAN
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Table 1: Charge prediction results of different models on three datasets. Improvements are statistically significant with p < 0.05.

Datasets Criminal-S Criminal-M Criminal-L

Metrics Acc MP MR F1 Acc MP MR F1 Acc MP MR F1

TFIDF-SVM 85.8 49.7 41.9 43.5 89.6 58.8 50.1 52.1 91.8 67.5 54.1 57.5
CNN 91.9 50.5 44.9 46.1 93.5 57.6 48.1 50.5 93.9 66.0 50.3 54.7
LSTM 93.5 59.4 58.6 57.3 94.7 65.8 63.0 62.6 95.5 69.8 67.0 66.8
CNN-Capsule 93.3 61.8 61.0 59.8 94.3 69.7 68.0 67.8 95.2 77.1 72.6 73.3
BERT 95.3 70.6 70.8 70.0 96.4 79.2 75.6 76.5 96.8 83.1 79.1 80.1

EXAM 92.4 58.9 56.6 56.3 94.2 64.1 60.0 60.9 94.5 69.5 64.2 64.6
LEAM 92.9 60.0 59.0 58.7 93.2 64.3 57.4 58.9 94.8 74.5 66.8 68.8
LSAN 93.7 58.3 56.1 56.1 94.9 68.0 63.0 64.2 95.7 79.0 71.7 73.9

Fact-Law Attention Model 92.8 57.0 53.9 53.4 94.7 66.7 60.4 61.8 95.7 73.3 67.1 68.6
Attribute-attentive Model 93.4 66.7 69.2 64.9 94.4 68.3 69.2 67.1 95.8 75.8 73.7 73.1
HLCP - - - - - - - - 95.9 78.8 73.5 74.7
SECaps 94.8 71.3 70.3 69.4 95.4 71.3 70.2 69.6 96.0 81.9 79.7 79.5
SAttCaps 95.1 74.2 72.4 72.2 96.0 78.2 76.6 76.4 96.4 85.2 81.9 82.5

LeapBank 95.8 77.0 77.1 76.4 96.8 81.3 79.4 79.8 97.1 85.9 83.0 83.6
w/o attention 95.5 74.5 74.8 73.7 96.6 80.5 78.2 78.5 96.9 83.8 80.7 81.2
w/o fact representation 95.3 73.2 72.7 72.0 96.3 79.3 76.7 77.7 96.8 84.2 79.7 80.5

Table 2: The statistics of datasets.

Datasets Train Dev Test Charges
Criminal-S 61,589 7,755 7,702 149
Criminal-M 153,521 19,250 19,189 149
Criminal-L 306,900 38,429 38,368 149

of [CLS] token directly, but the performance is less effective. We
run multiple trials for each experiment, and the average results are
reported to avoid bias introduced by randomness.

4.2 Main Results
Table 1 shows the experimental results, which include three parts of
content. The first part shows the performance of general-purpose
text classification models. BERT beats all popular deep learning neu-
ral structures, which demonstrates the effectiveness of pre-trained
model. The second part illustrates the performance of state-of-the-
art label embedding models including EXAM, LEAM and LSAN.
LeapBank outperforms all three label embedding based classifiers
significantly, which indicates that our model can utilize the label in-
formation more effectively. The third part shows the performances
of legal charge prediction models published in previous works5,
which are collected from [17]. It’s interesting that although BERT
beats SAttCaps on accuracy, it loses Macro-F1 on both Criminal-S
and Criminal-L datasets. It indicates that for the numerous long-tail
charges, BERT also has limitations. Meanwhile, LeapBank outper-
forms BERT and SAttCaps on all metrics. Compared to BERT, Leap-
Bank obtains accuracy improvement of 0.5% on Criminal-S, 0.4%
on Criminal-M and 0.3% on Criminal-L, which means 10.6%, 11.1%,

5The original paper for HLCP [24] only illustrated the results on Criminal-L, and their
source code was not released.

9.4% relative error rate reduction correspondingly6. Compared to
SAttCaps, LeapBank achieves absolute Macro-F1 improvement of
4.2%, 3.4% and 1.1% on three datasets respectively. The results
demonstrate LeapBank not only obtains the best overall accuracy,
but also performs better on most of the classes.

4.3 Ablation Study
Table 1 also shows the results of ablation study: (1) To figure out
the contribution of the bilinear attention map, we remove the bi-
linear attention map 𝐴 from Equation 9. After degenerating into
the low-rank bilinear form without attention, the performance also
degrades on all three datasets. (2) In Equation 12, we aggregate
the fact representation h𝐷 with the bilinear fused representation
h𝐹 to get the final representation. Here, we remove h𝐷 , and use
h𝐹 only. Notice that the performance drops on all datasets, which
demonstrates the necessity of the fact representation. Conversely,
if we only use the fact representation h𝐷 , the model degenerates
into BERT and the performance is also worse than LeapBank. Thus,
it indicates that the fact representation h𝐷 and the bilinear fused
representation h𝐹 are complementary to each other.

4.4 Performance on Low-frequency Charges
To verify the advance of ourmodel on dealingwith long-tail charges,
we show the performance on charges with different frequencies. We
divide the Criminal-S into three parts according to the frequency
of charges. Following previous work [8], the charges with ≤ 10
cases are low-frequency (Low). The charges with > 100 cases are
high-frequency (High). The others belong to medium-frequency
(Medium). Here, we use Macro-F1 metric to evaluate the model

6For example, the relative error rate reduction for LeapBank vs. BERT on Criminal-S
is calculated as (4.7 - 4.2)/4.7 = 10.6%.
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Figure 3: Correlation between the learned text representation and charge embedding. (a) Cosine similarity matrix between
averaged text representation per charge and charge embedding, and (b) t-SNE plot of joint embedding of text and charges.

performance, which can better reflect the performance of the model
on the imbalanced scenario.

The experimental results on Criminal-S are shown in Table 3. It
shows that LeapBank outperforms all baselines on all frequencies.
Especially on low-frequency charges, LeapBank model outperforms
SAttCaps by 8.5% absolute improvement in terms of Macro-F1. We
conjecture that there are three possible reasons that leveraging la-
bel information can alleviate the data imbalance issue. First, labels
with similar semantic meanings may transfer knowledge from each
other, so knowledge may be shared across different labels. Second,
for the classes with very limited training samples, fusing the auxil-
iary information from labels can enhance the text representation
learning. Third, labels can help the model focus on the most salient
information in the lengthy fact description, which can generate
more discriminative text representations.

Table 3: Macro-F1 Performance of different models on
Criminal-S with different frequencies.

Charge Type Low Medium High

Charge Number 49 51 49

Attribute-attentive Model 49.7 60.0 85.2
SECaps 53.8 65.5 89.0
SAttCaps 59.5 67.8 89.4

LeapBank 68.0 70.7 90.7

4.5 Visualization
To further interpret the experimental results, we visualize the re-
lationship between charge embeddings and document represen-
tations in Figure 3. Considering the number of charges is large
(total 149 charges), here we focus on visualizing the top 15 minority
charges in Criminal-S.

In Figure 3(a), we visualize the cosine similarity matrix between
the learnt document representations and charge embeddings. The
rows are the averaged per-charge document representations, and

the columns are charge embeddings. We can observe that the on-
diagonal elements’ color is much heavier than the color of the
off-diagonal elements. It indicates the learnt charge embeddings
can effectively represent the semantic meanings of corresponding
charges. In Figure 3(b), we use t-SNE [44] to visualize both the high
dimensional representations of the documents and labels on a 2D
map. Different charges are depicted by different colors. The dots are
the document representations, and the large triangles are the charge
embeddings. It’s observed that each triangle is nearby the corre-
sponding document representations, while far from other classes.
It demonstrates our proposed model can learn very representative
embeddings even for the low-frequency charges.

5 DISCUSSION
In this section, we conduct further discussions including: (1) The
important hyper-parameter rank 𝑘 is studied. (2) The other popular
fusion approaches are explored. (3) We experiment on a multi-label
English legal document classification dataset. (4) We visualize the
training process to show BAF can facilitate faster convergence and
better accuracy. (5) We replace the shared encoder BERT with other
mainstream neural networks to demonstrate BAF can be easily
plugged into other neural architectures. (6) We analyze two good
cases that LeapBank predicts correctly while BERT makes mistakes.
(7)We summarize the limitations of our proposed model and discuss
the possible reasons.

5.1 Hyper-parameter Tuning
The rank value 𝑘 of bilinear pooling is a key hyper-parameter for
BAF which influences both the model’s performance and efficiency.
Here, we experiment on the Criminal-S dataset and tune the hyper-
parameter of rank𝑘 . Note that the rank value in attention and fusion
can be different, but for simplicity, we keep the two rank values
consistent to narrow the search space. The result is shown in Table
4. It’s observed that larger rank value brings better performance but
also contains more model parameters 7. To balance the performance

7Please note that we only report the model parameters of BAF across different ranks
𝑘 here.
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Table 4: Performance of different ranks on Criminal-S

rank Acc MP MR F1 nParams

96 95.6 72.2 72.2 71.2 0.37M
192 95.6 74.5 74.5 73.8 0.74M
384 95.7 76.6 76.0 75.3 1.48M
768 95.8 77.0 77.1 76.4 2.36M
1536 95.9 76.3 76.2 75.2 5.91M
3072 96.2 78.2 77.4 77.2 11.81M

and the model complexity, we choose 𝑟𝑎𝑛𝑘 = 768 in our final model.

5.2 Comparison with other Fusion Methods

Table 5: Performance of different fusion methods on
Criminal-S

method Acc MP MR F1

Co-attention 95.5 73.5 73.9 72.9

BAF𝑐𝑜𝑛𝑐𝑎𝑡 95.7 76.7 76.4 75.7
BAF𝑠𝑢𝑚 95.6 75.1 74.4 73.6
BAF 95.8 77.0 77.1 76.4

We conduct further experiments on Criminal-S to replace the
key component BAF with other fusion methods. (1) We compare
BAF with co-attention [52], which is also a widely applied fusion ap-
proach based on attention mechanism in multi-modal field. We ap-
ply attention mechanism on labels and document respectively, then
fuse the attentive document representation and label embeddings
by concatenation. (2) We develop two variant methods BAF𝑐𝑜𝑛𝑐𝑎𝑡
and BAF𝑎𝑑𝑑 , which replace the bilinear pooling fusion in BAF
with concatenation (G𝑡𝑖 𝑗 = [(E𝑖U

′ )𝑡 ; (Y𝑗V
′ )𝑡 ]) and summation

(G𝑡𝑖 𝑗 = (E𝑖U
′ )𝑡 + (Y𝑗V

′ )𝑡 ) respectively. Then the fused representa-
tion can be calculated by h

′
𝑡 = sum(G𝑡 ◦A). For fair comparison, we

set the rank to 768. Table 5 illustrates that: (a) BAF and its variants
are much better than co-attention, which indicates the necessity
of bilinear attention. (b) BAF outperforms BAF𝑐𝑜𝑛𝑐𝑎𝑡 and BAF𝑎𝑑𝑑
by 0.7% and 2.8% points on Macro-F1 respectively, showing the
superiority of bilinear pooling fusion.

5.3 Experiment on Multi-label Legal Dataset
To explore the capability of LeapBank on other legal task, we ap-
ply our model on the public EUR-Lex dataset [28], which contains
11,585 English legal documents of the European Union and 3,865
testing documents.The task is to predict the legal document into
the EUROVOC concept hierarchy with almost 4000 classes. For sim-
plicity, we select the top 500 classes for quick experiment and take
BERT-base as our baseline. To adapt the multi-label classification
setting, we change the softmax to sigmoid in the prediction layer.
We set the sequence length to 320, learning rate to 5e-5, and batch
size to 8 during training, and record the performance every 10,000
train steps until the convergence. Figure 4 shows that LeapBank

outperforms BERT significantly on both the accuracy and Macro-F1
during the whole training process and also converges much faster,
which demonstrates the generalization ability and advantage of
LeapBank on multi-label classification task.

Figure 4: The performance of BERT vs LeapBank on EUR-Lex
during the training process.

5.4 Visualization of Model Training

Figure 5: The accuracy changes with the increase of training
epochs. (a) Accuracy on validation set, and (b) accuracy on
test set.

In Section 5.3, we demonstrate LeapBank can converge much
faster and obtain better accuracy than BERT on the multi-label legal
dataset EUR-Lex. In this section, we supplement the visualization of
model training on the Criminal-S dataset. Without loss of generality,
we compare CNNwith CNN+BAF. The results are reported in Figure
5. It’s observed that: (1) Both the CNN and CNN+BAF can converge
within 20 epochs; (2) CNN+BAF converges faster than CNN, and
can achieve better accuracy on both the validation set and test set,
which indicates that BAF has better generalization ability.

5.5 Universality of BAF
As mentioned in Section 3.1, we utilize the popular pre-trained
model BERT [3] as the shared encoder for both fact description and
charge labels. Here, we conduct further experiments to show the
universality of BAF. To figure out if BAF also works for other neural
structures, we plug BAF into more deep learning models (e.g., CNN,
GRU, LSTM) and implement corresponding BAF-enhanced models
(e.g., CNN+BAF, GRU+BAF, LSTM+BAF). For fair comparison, we
keep the model structure and hyper-parameters consistent with
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Table 6: Performance of different BAF-enhanced models on Criminal-S.

Model Acc MP MR F1

CNN 91.9 50.5 44.9 46.1
CNN+BAF 93.1(↑ 1.2%) 56.9(↑ 6.4%) 55.0(↑ 10.1%) 54.9(↑ 8.8%)
GRU 93.7 54.4 52.7 52.6
GRU+BAF 94.5(↑ 0.8%) 59.3 (↑ 4.9%) 58.0(↑ 5.3%) 57.7(↑ 5.1%)
LSTM 93.5 59.4 58.6 57.3
LSTM+BAF 94.2(↑ 0.7%) 63.2(↑ 3.8%) 61.5(↑ 2.9%) 61.2(↑ 3.9%)

our baselines. For the sake of simplicity, we perform experiments
on Criminal-S dataset. Table 6 shows that all BAF-enhanced models
outperform the corresponding original models significantly on all
metrics, which demonstrate that BAF can be an effective module to
enhance various neural structures.

5.6 Case Study
In this section, we conduct case study to demonstrate how charge
labels help the model make the correct prediction. Figure 6 shows
two real cases from the Criminal-S dataset. For both two cases,
LeapBank predicted the charge correctly while BERT made mis-
takes. For the ground-truth charges, both two have only 8 training
samples, which means it’s quite challenging for the model to learn
a discriminative representation from the very limited training data.

For Case (a), the two charges of “Crime of illegally perform-
ing birth control operations” and “Illegal practice of medicine” in-
deed have similar semantic meanings. From the words and phrases
marked by the red color, the model is prone to make mistakes be-
cause those words indicate the “illegal practice of using drugs”.
However, because “birth control” occurs in the ground-truth charge
label, we can see that the words in the green color (e.g. “fetus”
and “birth”) guide the model to catch the semantic relationship
between fact description and charge labels, which finally facilitates
the model’s prediction by fusing the information from both sides.
Similarly, for Case (b), it can be seen that the words of “forced” and
“working” have very similar meaning with the ground-truth charge
label (“forced labor”), and finally our proposed model can predict
the charge correctly. Both two cases also reveal that leveraging the
rich knowledge of charge labels can enhance the representation
of fact description and alleviate the data imbalance issue to some
extent for this task.

5.7 Error Analysis
However, we also want to analyze the erroneous cases and discuss
the limitations of LeapBank. (1) For some cases with lengthy fact
description (≥ 1000 characters), our model failed to make correct
predictions because the maximum sentence length is set to 512
characters for BERT. (2) For charges with confusion (e.g. “illegally
felling trees” and “illegal denudation”), the model failed to distin-
guish in their nature, especially when both of them are long-tail
charges and the charge labels also have similar semantic meanings.
(3) For charges with very rare cases (e.g. “destroying computer in-
formation system”), there are only 8 cases in Criminal-S, It’s still

very challenging although LeapBank has alleviated this issue to
some extent. We will keep improving above aspects in the future.

6 ETHICAL CONCERNS
The judgment prediction is an emerging technology at its exploratory
stage. We should be aware of the risks and prevent any inappropri-
ate use of the technology. There are several ethical concerns worth
discussions: 1) The proposed algorithm is designed to predict legal
charges for assisting the trial judges for decision making, but it
should never replace human judges. Human knowledge/judgment
should be the final safeguard to protect social justice and individ-
ual fairness. 2) The learnt system may make mistakes because of
some subtle details. For example, the numerical values and some
infrequent named entities are often hard to learn by neural models,
which may cause wrong judgment prediction. The judges need to
check the results from algorithm. 3) The model is trained with his-
torical data, which may face potential demographic bias/unfairness
challenges, such as gender, age and race bias. Also, with the de-
velopment of our society, new forms of crimes will appear. The
algorithm adoption should be empowered with de-biased legal con-
tent pretraining and updated timely.

7 RELATEDWORK
7.1 Charge Prediction
Legal charge prediction has drawn attention from researchers in
the legal field for decades [12, 16, 27, 30]. Existing works treat
charge prediction as a multi-class text classification problem. Both
traditional machine learning methods based on feature engineering
[11, 19–21, 23, 40] and the recent deep learning based neural models
[6, 9, 10, 17, 24–26, 48, 49, 55, 56] are applied in this task and achieve
remarkable performance.

Two lines of work are closely relevant to us. One line of works
focus on the data imbalance issue and long-tail charges. For ex-
ample, Hu et al. [8] proposed an attribute-attentive charge predic-
tion model. He et al. [6] presented a sequence enhanced capsule
(SECaps) model and devised an attention residual unit to capture
crucial textual information. Le et al. [17] designed a self-attentive
capsule network, which employs a self-attentive dynamic routing
for charge prediction. Different from them, we concentrate on utiliz-
ing the linguistic knowledge of charge labels to alleviate this issue.
The other line of works propose to utilize the charge label related
information to enhance the representation of documents. Liu et al.
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Figure 6: Case study. Words in the green color help model predict correctly. We translate the Chinese to English for better
understanding.

[24] incorporated text information of charges with the attention-
based sequence to sequence model. Kang et al. [10] explored to use
the charge definitions and designed an integrated sentence-level
and word-level interaction based on episodic memory attention
mechanism. Compared with them: (1) Our model does not need
auxiliary expert knowledge or resources (e.g., charge definitions in
law or hierarchical dependencies of charges), and thus is easier to
extend to other tasks. (2) We analogize the charge labels and fact
description to the vision and language channels in the multi-modal
field, and formulate their interactions as a multi-modal information
fusion problem.

7.2 Label Embedding
Label embedding is to learn the embeddings of the labels in classifi-
cation tasks and has been proven to be effective in computer vision
[1, 5, 37] and natural language processing [29, 32, 42, 46, 51, 54].
One line of related works are Nam et al. [32] and Pappas and Hen-
derson [34]. Nam et al. [32] learned input-label representations
by introducing bilinear model and using hinge loss for classifica-
tion. Pappas and Henderson [34] focused on giving nonlinearity
to bilinear function to learn input-label representations with label-
set-size independent parametrization. Compared to them, our work
also jointly learns the label embeddings. However, they focused on
generalizing to unseen labels in classification, while we design a bi-
linear attention fusion block to fuse the given text-label information
seamlessly. Another line of related works are LEAM [46], LSAN [47]
and EXAM [4]. The main difference lies in the approach of utilizing

label embeddings. LEAM catches the interaction matrix between
words and labels based on cosine similarity and applies a convolu-
tion layer to measure the attention score for each word. LSAN and
EXAM get the word-label similarity matrix by dot product. LSAN
directly uses this matrix as weight to get a label-specific document
representation, but EXAM puts a MLP on it to get the final pre-
diction. Differently, LeapBank considers all pairwise interactions
among tokens in text and labels through outer product (not inner
product), thus it can capture fine-grained interactions between text
and labels and generate more expressive representation.

8 CONCLUSIONS
This paper proposes a novel model LeapBank to enhance the legal
charge prediction task by fusing the information of fact description
and charge labels. A novel bilinear attention fusion block is de-
vised to catch the fine-grained interactions between text and labels,
which are analogous to vision-language information fusion in multi-
modal field. Experimental results on three real-world datasets show
that our proposed model outperforms the state-of-the-art baselines
significantly. We also verify the universality of LeapBank by exper-
imenting on the multi-label legal document classification task. In
the future, we will explore more multi-modal information fusion
methods, i.e. X-linear [33], to facilitate this task.
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