Dialogues, recognizing the entities to fill slots in conversations, and detecting the user’s emotion to generate empathetic responses. Unlike regular language understanding, conversational utterances appear alternately from different parties and are usually organized as hierarchical structures. The underlying difference of linguistic patterns between general text and dialogue utterances makes existing language understanding approaches less satisfying.

To understand the dialogue utterances accurately, lots of efforts have been made by devising various dialogue encoders and remarkable progresses have been achieved recently. One line of researches leverage the memory-networks [7, 14, 16, 19] to encode the dialogues for downstream tasks such as intent recognition, emotion recognition, etc. With the great success of pre-trained language models such as BERT [3, 4], RoBERTa [9], etc., some researchers transformed the dialogue modeling problem into a Machine Reading Comprehension (MRC) problem [1, 2, 12]. Recently, some dialogue-specific pre-training tasks are also proposed and obtain state-of-the-art (SOTA) results in the dialogue relevant downstream tasks. Qu et al. [10] incorporate history utterance embeddings into BERT model to find answer for user’s question. The PT-CoDE [6] model leverages a hierarchical neural network to encode the conversation and pre-trains the model with conversation completion tasks. The TOD-BERT [18] pre-trains the BERT model from scratch by using both masked language modeling and response contrastive loss. DialoGPT [21] generates conversation responses by pre-training GPT2 [11] with huge amount dialogue corpus, which is mainly dedicated to response generation task instead of language understanding. Those pre-trained language models in open-domain and dialogue-specific domain all follow the self-supervised learning (SSL) [8] paradigm, where the input text is supposed to be recovered from partially observed input context.

Although the previous researches have proposed several SSL methods to pre-train the dialogue encoder, the dialogue-specific SSL is far from well-explored. There is still lack of enough researches for exploration of new SSL methods and comparison between different SSL pre-training tasks for dialogue encoding. To address this issue,
in this paper, we propose a novel dialogue encoder (denoted as DialogueBERT) based on the prevalent pre-trained language model BERT [4]. To catch the particularity of dialogue utterances, we devise five self-supervised learning based pre-training tasks and train the DialogueBERT with large-scale conversation corpus. Inspired by [22], a convolutional pooler based on convolutional neural network (CNN) and 2D pooling is designed to extract the dialogue feature representations. To learn the relationship between different utterances in the dialogue, four different input embeddings are integrated, including token embedding, position embedding, role embedding and turn embedding. DialogueBERT is pre-trained with over 70 million of dialogues, which are collected from real conversations between users and customer service staffs in E-commerce scenario. To verify the effectiveness of our pre-trained dialogue encoder, extensive experiments were conducted by fine-tuning DialogueBERT on three downstream dialogue understanding tasks, including intent recognition, emotion recognition, and named entity recognition. Experimental results show that the proposed method outperforms several strong dialogue encoding approaches and achieves 88.63% accuracy score for intent recognition, 94.25% accuracy for emotion recognition and 97.04% F1 score for named entity recognition. Ablation study was also conducted to figure out the contribution of each SSL pre-training task, which can further inspire the future researches to build better dialogue encoder.

Specifically, our contributions include:

- We propose a novel pre-trained dialogue encoder based on BERT by devising five self-supervised learning pre-training tasks, including masked language modeling, masked utterance prediction, utterance replacement, turn swapping, and response selection. The model was pre-trained with more than 70 million of dialogues.
- We verify the effectiveness of DialogueBERT on three representative downstream dialogue tasks, including intent recognition, emotion recognition, and named entity recognition. Experimental results show the superiority and competitiveness of our proposed model.

2 APPROACH

In this Section, we will introduce the model input, model structure and self-supervised learning based model pre-training. Figure 1 demonstrates the overall architecture of our proposed model.

2.1 Model Input

In order to pre-train the model, we firstly collect a large-scale dialogue corpus from real conversations between customers and customer service staffs. After that, we desensitized and anonymized the private information based on very detailed rules. Finally, we collected over 70 million conversations with 8.59 utterances on average for each conversation. For each conversation utterance, we prepend one of the two special tags, i.e. "<Q>" (customer’s query) and "<A>" (customer service staff’s response). Then we concatenate the utterances to form the input text as "<Q>xxxx-A-yyyy-Q-yyyy...". We trained a BPE sentencepiece tokenizer [13] with 5 million randomly sampled conversations. The vocabulary size is set to 50,000. Then we split the conversation input text into tokens. To catch the relationship between utterances, we combine the token, role and turn information for model input. As shown in Figure 1, tokens (denoted as "T_i,T_j") in each utterance are assigned with the corresponding turn information (indexed from "1" for the first utterance) and role information ("q" represents question and "a" denotes response). We restrict the maximum utterance length to 15 tokens and maximum conversation input text length to 128 tokens, where extra tokens are clipped.

2.2 Model Structure

The proposed dialogue encoder is illustrated in Figure 1 which consists of four input embeddings, the Transformer Encoder, the Model Output and five SSL pre-training headers. The embedding layer consists of token embedding, position embedding, role embedding and turn embedding that can map the token, token position, role information and turn information of input sequence into dense vectors (i.e. vec_token, vec_pos, vec_role and vec_turn respectively). The embedding layer then sums up the four embeddings together and apply a layer normalization to obtain the final input embedding vecemb.

\[
vec_{emb} = vec_{token} + vec_{pos} + vec_{role} + vec_{turn}
\]

The Transformer Encoder is same as the BERT that contains 12 Transformer blocks [15]. It takes vecemb of each token as input and outputs N contextual vectors (denoted as u1,u2,...uN and u_i \in \mathbb{R}^d, 1 \leq i \leq N). Besides the contextual vectors, the model output also contains a dialogue representation feature vector. We use a CNN pooler to get the dialogue representation. There are six 1-D convolution kernels (filter sizes are 5, 7, 9, 11, 15, 20, where the output channel size is the same as BERT, i.e. each kernel \in \mathbb{R}^{k \times d} and d is the dimension of 768) in the CNN. Inspired by [22], we apply a 2D-pooling on the CNN output to get the dialogue encoder pooling feature vector (vec_diag \in \mathbb{R}^d). While the self-attention mechanism of BERT can capture the global semantics of input sequence, the
convolution kernels applied along the input sequence dimension can capture the local n-gram-level lexical and semantic information. The five SSL headers are used to pre-train the DialogueBERT with the huge conversation corpus, which will be described in detail in Section 2.3.

2.3 SSL-based Model Pre-Training

Considering the dialogue involves the token/word level feature, utterance level feature, and conversation order feature, etc., we design five different SSL pre-training tasks. As shown in Figure 1, the proposed SSL pre-training tasks are as follows:

- **MUM** is a masked utterance modeling SSL task, where we randomly mask one utterance in a conversation with several special tokens, i.e. "[MASK]" (replace the m tokens in the utterance), then the model is required to generate the tokens of the masked utterance. The SSL method of the work in [6] selects the utterance from a candidate set (we denote this as MSM) while we directly predict the utterance in token level. We argue that because the candidate set is randomly sampled in [6], it is not a good choice for a contrastive SSL task due to poor contrastive samples [8]. We feed the masked token vectors ($u_{mask_1}, u_{mask_2}, ..., u_{mask_m}$) to the masked language header to predict the original tokens by following the approach in BERT [4].

- **MLM** is a masked language modeling SSL task, where we follows the setting in [3]. This SSL task aims to learn the language modeling structure of the conversation text.

- **ReplDisc** randomly (with probability of 0.5) replaces one utterance in a conversation with a randomly selected utterance from another conversation in the same training batch, and then discriminates whether the new conversation is the replaced one or the original one. This SSL task is devised to learn the contextual feature of the conversation.

- **TurnDisc** randomly swaps two utterances in a conversation and then discriminates whether the new conversation is swapped, where the turn in new conversation is still indexed in ascending order (we do not swap the turn information of the two utterances). This SSL task is designed to learn the utterance order feature of conversation.

- **ResSel** is the same as the response constrastive loss (RCL) in [18], which can help learning a better representation for the [CLS] token, and capturing underlying dialogue sequential order, structure information, and response similarity. Differently, we only use the model to select the last utterance of a conversation from a set of candidate responses that are from the training batch.

For **ReplDisc** and **TurnDisc**, we use the logistic regression to predict the results with vec_{diag} (Section 2.2) as input feature vector. The cross entropy is applied to compute loss for each SSL task. Then we sum up all the losses of the five SSL tasks in pre-training and apply LAMB optimizer [20] with maximum learning rate as 1e-4, warm-up steps as 10K and batch size as 256. We trained the DialogueBERT for 10 epochs with all the 70 million conversation corpus. For the downstream NLP tasks, we follow the settings of DialogueBERT for 10 epochs with all the 70 million conversation corpus. For the downstream NLP tasks, we follow the setting of DialogueBERT for 10 epochs with all the 70 million conversation corpus. For the downstream NLP tasks, we follow the setting of DialogueBERT for 10 epochs with all the 70 million conversation corpus. We evaluate the effectiveness of DialogueBERT in three tasks: intent recognition (IntR), named entity recognition (NER) and emotion recognition (EmoR). For IntR and EmoR respectively) for prediction. We get the predictions via $Wvec_{diag} \in R^C$ and calculate the classification loss via Equation 2 as follows:

$$loss_{class} = - \log(softmax(Wvec_{diag}))$$

(2)

For the named entity recognition (NER), we use the BIO tagging schema to create the annotated corpus, where B represents the beginning of a named entity, I represents the inside tokens of a named entity and O represents the non-entity tokens. We use the N output vectors of input tokens, denoted as $U \in R^{N \times d}$ ($U = \{u_1, u_2, ..., u_N\}$), and then apply a standard token classification head ($W_{ner} \in R^{d \times P}$) to get the token-level classification output $W_{ner}U \in R^{N \times P}$, where P is the number of tagging labels (i.e. 28 B-ne tags, 28 I-ne tags and 1 O tag, totally $28 \times 2 + 1$). We compute the NER loss via Equation 3 during fine-tuning.

$$loss_{ner} = - \frac{1}{N} \sum_{i=1}^{N} \log(softmax(W_{ner}u_i)), 1 \leq i \leq N$$

(3)

3.2 Experiment Setup

We evaluate the effectiveness of DialogueBERT in three tasks: intent recognition (IntR), named entity recognition (NER) and emotion recognition (EmoR). For IntR and EmoR, we use the classification

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Train</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntR</td>
<td>185.2K</td>
<td>1K</td>
<td>9.8K</td>
</tr>
<tr>
<td>EmoR</td>
<td>208K</td>
<td>1K</td>
<td>11K</td>
</tr>
<tr>
<td>NER</td>
<td>44.6K</td>
<td>1K</td>
<td>2.4K</td>
</tr>
</tbody>
</table>

Table 1: The statistics of the experimental datasets
As shown in Table 2, DialogueBERT outperforms the baselines in all the three downstream dialogue understanding tasks. The Table 2 shows the experimental results for each SSL pre-training task. We found that the MUM is the most effective SSL pre-training task. The MUM achieves similar performance with MUM but better score than MSM, which demonstrates that the last utterance in the conversation is very important for building the dialogue encoder. Please note that the research in [6] applies the MSM (conversation completion; refer to Section 2.2) for pre-training, while our experiments show that the MUM SSL method is better for dialogue encoder. The MUM outperforms the MSM by 0.29%, 0.36% and 0.91% in the three tasks (i.e., IntR, NER, EmoR) respectively. We argue that because there are usually within 15 tokens for each utterance, it is easier for the model to generate the utterance in token level, where the model can avoid suffering from poor constrastive candidate samples in MLM. Overall speaking, each of the proposed SSL task contributes to the final gain of DialogueBERT. Considering the different contributions for each task, we will try to combine the five SSL tasks. Meanwhile, it also demonstrates the contribution of our CNN pooler.

3.4 Ablation Study

Table 3 shows the experimental results for each SSL pre-training task. Our method gets 88.63% accuracy for intent recognition, 97.04% Macro-F1 score for named entity recognition and 94.25% accuracy for emotion recognition, which outperforms the TOD-BERT by 0.72%, 0.19% and 1.42% respectively (statistically significant difference with p < 0.05). It’s also observed that all the SSL based methods (TOD-BERT, PT-CoDE, DialogueBERT) outperform the memory networks based methods significantly, which demonstrate the superiority of SSL methods in dialogue encoding.

The DialogueBERTCLS in Table 2 denotes that we prepend a special classification token “[CLS]” token to the conversation input text and use the transformer encoder output utCLS as pooling vector rather than applying our CNN pooler (Section 2.2). The “CLS” pooling strategy is previously used by the open-domain BERT [4] and dialogue-specific encoder TOD-BERT [18] (TOD-BERT outperforms the original open-domain BERT in dialogue-specific tasks). Compared with the DialogueBERT, the performance of DialogueBERTCLS drops 0.31%, 0.04% and 0.09% for intent recognition, named entity recognition and emotion recognition respectively while it still outperforms the other baselines. It indicates that, on the one hand, the performance gain of DialogueBERT is mainly from the five SSL tasks. Meanwhile, it also demonstrates the contribution of our CNN pooler.

4 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel dialogue pre-training encoder, i.e., DialogueBERT. Five different self-supervised learning based pre-training tasks are devised to catch the particularity of conversation utterances and enhance the dialogue representations. Then we verify the effectiveness of DialogueBERT on three representative downstream dialogue understanding tasks, including intent recognition, named entity recognition and emotion recognition. We also analyze the contribution of each SSL task independently. In the future, we plan to design query rewriting task in the pre-training stage to enhance the context modeling.

Table 2: Performance comparison of different models on three downstream dialogue understanding tasks.

<table>
<thead>
<tr>
<th>Model</th>
<th>IntR</th>
<th>NER</th>
<th>EmoR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMN [7]</td>
<td>83.15</td>
<td>-</td>
<td>90.16</td>
</tr>
<tr>
<td>KVNet [19]</td>
<td>74.22</td>
<td>-</td>
<td>85.47</td>
</tr>
<tr>
<td>PT-CoDE [6]</td>
<td>86.36</td>
<td>-</td>
<td>92.95</td>
</tr>
<tr>
<td>TOD-BERT [18]</td>
<td>87.91</td>
<td>96.85</td>
<td>92.83</td>
</tr>
<tr>
<td>DialogueBERTCLS</td>
<td>88.32</td>
<td>97.00</td>
<td>94.16</td>
</tr>
<tr>
<td>DialogueBERT</td>
<td>88.63</td>
<td>97.04</td>
<td>94.25</td>
</tr>
</tbody>
</table>

Table 3: Ablation Study of each SSL pre-training task. MLM task is combined to each pre-training task by default for stable training.

<table>
<thead>
<tr>
<th>SSL task</th>
<th>IntR</th>
<th>NER</th>
<th>EmoR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUM</td>
<td>87.92</td>
<td>96.95</td>
<td>93.56</td>
</tr>
<tr>
<td>MSM</td>
<td>87.63</td>
<td>96.59</td>
<td>92.65</td>
</tr>
<tr>
<td>ResSel</td>
<td>87.97</td>
<td>96.85</td>
<td>92.88</td>
</tr>
<tr>
<td>ReplDisc</td>
<td>87.24</td>
<td>96.11</td>
<td>92.15</td>
</tr>
<tr>
<td>TurnDisc</td>
<td>86.25</td>
<td>96.03</td>
<td>92.07</td>
</tr>
<tr>
<td>DialogueBERT</td>
<td>88.63</td>
<td>97.04</td>
<td>94.25</td>
</tr>
</tbody>
</table>
REFERENCES

