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ABSTRACT
Span-level masked language modeling (MLM) has shown to be ad-
vantageous to pre-trained language models over the original single-
token MLM, as entities/phrases and their dependencies are critical
to language understanding. Previous works only consider span
length with some discrete distributions, while the dependencies
among spans are ignored, i.e., assuming that the positions of masked
spans are uniformly distributed. In this paper, we present POSPAN,
a general framework to allow diverse position-constrained span
masking strategies via the combination of span length distribu-
tion and position constraint distribution, which unifies all existing
span-level masking methods. To verify the effectiveness of POSPAN
in pre-training, we evaluate it on the datasets from several NLU
benchmarks. Experimental results indicate that the position con-
straint is capable of enhancing span-level masking broadly, and our
best POSPAN setting consistently outperforms its span-length-only
counterparts and vanilla MLM. We also conduct theoretical analy-
sis for the position constraint in masked language models to shed
light on the reason why POSPAN works well, demonstrating the
rationality and necessity of POSPAN.
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• Computing methodologies → Lexical semantics; Natural
language processing.
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1 INTRODUCTION
Large-scale pre-trained language models (PLMs) have achieved
unmatched performance in many natural language understanding
(NLU) tasks [5, 12, 18, 26]. As one of the most dominant model
families, BERT-based models leverage masked language modeling
(MLM) [5], a token-level denoised auto-encoding task, to facili-
tate the representation learning during pre-training. MLM sam-
ples tokens from the input text and replaces them with a special
token “[MASK]”, then asks the model to reconstruct original to-
kens based on the contextual hidden representations of masked
tokens, enabling the model to capture semantics of each token with
bi-directional context. However, the vanilla MLM only considers
masking individual tokens (words or sub-words) randomly, hence it
neglects the information beyond token level, such as the composi-
tional semantics for a phrase and the inter-token dependency for an
entity, which are critical components of NLU in pre-training [25].

To learn the rich semantics in spans, e.g., phrases, entities, and
n-grams, there has been an increasing body of works aiming to
improve MLM [3, 10, 25, 29]. They mostly focus on span-level
masking methods, where a contiguous token sequence, i.e., span,
is masked according to some discrete span length distributions
whose parameters are either preset [10] or adapted from external
knowledge [18]. Despite being advantageous over the vanilla MLM
in Joshi et al. [10], existing span-level masking methods all assume
that the positions of masked spans are uniformly distributed, that
is, the masked spans of a sequence are independent from each
other [1]. This could cause sub-optimal selection of masked spans
in pre-training, since the intrinsic features of natural languages,
including semantic flows and inter-span interactions, can lead to
strong dependencies of phrases and entities across context [3].
Therefore, the assumption of uniformly-distributed positions of
masked spans might not be a proper inductive bias, conversely,
span masking bonded with certain position distance is likely to
yield a better modeling of contextual dependencies.

To this end, we propose POSPAN, a general span masking al-
gorithm that allows diverse POsition-constrained SPAN masking
strategies. POSPAN employs a span length distribution 𝐹𝑀 and a po-
sition constraint distribution 𝐹𝐷 to control the length and position
distance of masked spans, respectively. Moreover, all current span-
level masking methods could be unified under POSPAN, where
𝐹𝑀 s are different while 𝐹𝐷s are derived from the same uniform
distribution. To verify the effectiveness of POSPAN for language
understanding, we evaluate PLMs with POSPAN on various tasks
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Algorithm 1: Position-Constrained Span Masking
Input: 𝑁 , 𝑟𝑚 ,𝑇 , 𝐹𝑀 , 𝐹𝐷
Output:𝑇𝑚

1 // masking rate: 𝑟𝑚 , input tokens:𝑇 , input token length: 𝑁
2 // masked tokens:𝑇𝑚
3 // initialize vectors:𝑚, 𝑑 ,𝑇𝑚
4 𝑀=vector(𝑁 ), 𝐷=vector(𝑁 ),𝑇𝑚=copy(𝑇 );
5 for i=1 → N do
6 sample span length 𝑙𝑒𝑛𝑖 ∼ 𝐹𝑀 ;
7 sample position distance 𝑑𝑖 ∼ 𝐹𝐷 ;
8 𝑀[i]=𝑙𝑒𝑛𝑖 , 𝐷[i]=𝑑𝑖 ;

9 spans=List(), pos=1, start=0, do_mask=False;
10 while (𝑝𝑜𝑠 < 𝑁 ) do
11 start=pos ;
12 if(do_mask==False) then pos+=𝐷[pos]
13 else pos+=𝑀[pos] ;
14 do_mask=¬do_mask ;
15 if(do_mask==True) spans.add(pair<start, pos-start>) ;

16 while(sum(spans.second) > 𝑟𝑚𝑁 ) random.pop_one(spans) ;
17 for span in spans do
18 set_value(𝑇𝑚 , span, [MASK]) ;

from the GLUE [21] and Super GLUE [20] benchmarks. Experi-
mental results show that POSPAN can outperform the previous
span-length-only counterparts consistently when combined with
suitable position constraints, which also matches the conclusion of
our theoretical analysis.

2 APPROACH
2.1 Span Masking with Two Distributions
For span masking, there are two important factors: (1) the length
of a span, i.e., how many consecutive tokens need to be masked,
and (2) the position of a span, i.e., where to start masking. Given a
sequence with𝑚 masked spans, 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑚}, the length and
position of the 𝑖-th span are denoted as 𝑙𝑒𝑛𝑖 and 𝑝𝑜𝑠𝑖 (for simplicity,
we use 𝑖 to represent the full notation of 𝑖-th span, 𝑆𝑖 ), we formulate
these factors under two distributions:

𝑙𝑒𝑛𝑖 ∼ 𝐹𝑀 ,

|𝑝𝑜𝑠𝑖+1 − 𝑝𝑜𝑠𝑖 | ∼ 𝐹𝐷 , 0 ≤ 𝑝𝑜𝑠𝑖 < 𝑝𝑜𝑠𝑖+1 ≤ 𝑁,

where 𝐹𝑀 is the span length distribution, and |𝑝𝑜𝑠𝑖+1−𝑝𝑜𝑠𝑖 |, named
as position constraint, is the distance between two spans, 𝑆𝑖 and
𝑆𝑖+1, which follows the span constraint distribution 𝐹𝐷 . 𝑁 is the
length of input tokens.

Previous works mainly focus on the design of 𝐹𝑀 , while the span
position is randomly selected.We can derive that 𝐹𝐷 behind random
selection is a polynomial distribution. We start with two random
spans, 𝑆𝑖 and 𝑆 𝑗 , and the probability of their position constraint
with length 𝑑 is a new distribution ˆ𝐹𝐷 :

𝑃 ( |𝑝𝑜𝑠𝑖 − 𝑝𝑜𝑠 𝑗 | ≤ 𝑑 ) = ˆ𝐹𝐷 (𝑑 ) . (1)

Given the fixed masking rate 𝑟𝑚 ∈ (0, 1), 𝑟𝑚 × 𝑁 tokens will be
masked, and the position constraint 𝑑 is between 0 and (1 − 𝑟𝑚)𝑁 ,
i.e., 0 ≤ 𝑑 ≤ (1−𝑟𝑚)𝑁 . Then, ˆ𝐹𝐷 (𝑑) can be obtained by integrating

the position constraint over all positions:

ˆ𝐹𝐷 (𝑑 ) = 1
𝑐

( ∫ 𝑑

0
(𝑝𝑜𝑠 𝑗 + 𝑑 )d𝑝𝑜𝑠 𝑗

+
∫ 𝑁

𝑁 −𝑑

(
𝑁 − (𝑝𝑜𝑠 𝑗 − 𝑑 )

)
d𝑝𝑜𝑠 𝑗

+
∫ 𝑁 −𝑑

𝑑

(
𝑝𝑜𝑠 𝑗 + 𝑑 − (𝑝𝑜𝑠 𝑗 − 𝑑 )

)
d𝑝𝑜𝑠 𝑗

)
=

2𝑁𝑑 − 𝑑2

𝑐
,

(2)

where 𝑐 = (1 − 𝑟2𝑚)𝑁 2 is added to scale the result in range (0, 1).
Since there are |𝑆 | spans uniformly sampled and the position

constraint of each span pair follows ˆ𝐹𝐷 (𝑑), the position constraint
of two consecutive spans follows another polynomial distribution,
denoted as 𝑝𝑜𝑙𝑦𝑛(𝑟𝑚, 𝑁 ):

𝑝𝑜𝑙𝑦𝑛 (𝑟𝑚, 𝑁 ) ∼ 𝐹𝐷 = 𝑃 (𝑝𝑜𝑠𝑖+1 − 𝑝𝑜𝑠𝑖 ≤ 𝑑

|𝑆 | − 1
)

≈ ˆ𝐹𝐷 (𝑑 )
(3)

It is clear that 𝐹𝐷 of existing methods is not fully considered,
and we will explore the combination of different 𝐹𝑀 s and 𝐹𝐷s in
the following subsections.

2.2 Theoretical Analysis of POSPAN
2.2.1 Latent Semantic Dependency. Assuming two spans of an in-
put text are 𝑆𝑖 and 𝑆 𝑗 whose start positions are 𝑖 and 𝑗 , respectively.
There are 𝑙𝑒𝑛𝑖 = |𝑆𝑖 | tokens in 𝑆𝑖 and 𝑙𝑒𝑛 𝑗 = |𝑆 𝑗 | tokens in 𝑆 𝑗 .
The contextual dependency of spans entails rich semantics that
are important for the prediction of masked spans. We use a latent
variable 𝑅𝑖 𝑗 to represent the semantic dependency between 𝑆𝑖 and
𝑆 𝑗 . In general, there are 3 cases for 𝑅𝑖 𝑗 in the natural language:

• Case 1: There are barely any dependency or semantic re-
lationship between 𝑆𝑖 and 𝑆 𝑗 , i.e., we can predict 𝑆𝑖 and 𝑆 𝑗
independently without knowing each other.

• Case 2: 𝑆𝑖 → 𝑆 𝑗 , i.e., 𝑆𝑖 is the premise of 𝑆 𝑗 . When 𝑆𝑖 appears,
𝑆 𝑗 will appear most of the time.

• Case 3: 𝑆 𝑗 → 𝑆𝑖 , i.e., 𝑆 𝑗 is the premise of 𝑆𝑖 .
With the latent variable 𝑅𝑖 𝑗 , we denote span masking methods

as follows:

𝑃 (𝑆𝑖 , 𝑆 𝑗 |𝑅𝑖 𝑗 ) =
𝑃 (𝑅𝑖 𝑗 |𝑆𝑖 , 𝑆 𝑗 ) ∗ 𝑃 (𝑆𝑖 , 𝑆 𝑗 )

𝑃 (𝑅𝑖 𝑗 )
,

log𝑃 (𝑆𝑖 , 𝑆 𝑗 |𝑅𝑖 𝑗 ) ∝ log𝑃 (𝑅𝑖 𝑗 |𝑆𝑖 , 𝑆 𝑗 )︸               ︷︷               ︸
1○

+ log𝑃 (𝑆𝑖 , 𝑆 𝑗 )︸         ︷︷         ︸
2○

, (4)

where 𝑃 (𝑅𝑖 𝑗 ) is the prior probability that can be estimated from the
corpus, and 𝑃 (𝑆𝑖 , 𝑆 𝑗 ) is the span pair probability that is represented
as 𝑃 (𝑥𝑖 , ..., 𝑥𝑖+𝑙𝑒𝑛𝑖−1, 𝑥 𝑗 , ..., 𝑥 𝑗+𝑙𝑒𝑛 𝑗−1). Then, to maximize the log-
likelihood of𝑀 masked spans in training, we have:∑︁

𝑖,𝑗

log𝑃 (𝑆𝑖 , 𝑆 𝑗 ) =
(𝑀 − 1) log𝑃 (𝑆1, 𝑆2, ..., 𝑆𝑀 )

2

∝
𝑀∑︁
𝑖=1

log𝑃 (𝑆𝑖 ) .

L𝑆 :→𝑚𝑎𝑥 (E[log𝑃 (𝑆𝑖 |𝑙𝑒𝑛𝑖 ) ] ), 𝑤ℎ𝑒𝑟𝑒

E[log𝑃 (𝑆𝑖 |𝑙𝑒𝑛𝑖 ) ] = E𝑙𝑒𝑛𝑖∼𝐹𝑀 (
𝑙𝑒𝑛𝑖−1∑︁
𝑙=0

log𝑃 (𝑥𝑖+𝑙 ) ) .

(5)
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The assumption in Equation (5) is that the probability of predict-
ing a masked token is independent from each other.

∑
𝑖, 𝑗 𝑃 (𝑆𝑖 , 𝑆 𝑗 )

represents 𝑀 (𝑀 − 1)/2 combinations of 𝑀 unique spans. We de-
note the objective function as the span loss L𝑆 , where span length
𝑙𝑒𝑛𝑖 ∼ 𝐹𝑀 , and “:→” means the goal of L𝑆 .

Previous works only focus on the second term in Equation (4)
with various 𝐹𝑀 s, and ignore the influence of latent semantic de-
pendency 𝑅𝑖 𝑗 denoted as the first term that is governed by 𝐹𝐷 . For
Case 1, the first term in Equation (4) is negligible. However, for
Case 2 and 3, the first term in Equation (4) is critical, since improper
settings of 𝐹𝐷 can harm span masking language models for natural
language understanding.

2.2.2 Position Constraint as Prior Knowledge. The prediction of
masked spans can be achieved via the usage of boundary tokens of
a span [10], i.e., 𝑃 (𝑆𝑖 ) can be estimated from the boundary tokens
of 𝑆𝑖 :

𝑃 (𝑆𝑖 ) = 𝑃 (𝑥𝑝𝑜𝑠𝑖−1, 𝑥𝑝𝑜𝑠𝑖+𝑙𝑒𝑛𝑖 , 𝑝𝑜𝑠𝑖 )
≈ 𝑃 (𝑥𝑝𝑜𝑠𝑖−1, 𝑥𝑝𝑜𝑠𝑖+𝑙𝑒𝑛𝑖 , ˆ𝑥𝑝𝑜𝑠𝑖 ),

(6)

where 𝑝𝑜𝑠𝑖 is the position of 𝑆𝑖 . Since we mask tokens in span
𝑆𝑖 , the masked token ˆ𝑥𝑝𝑜𝑠𝑖 is used to represent 𝑝𝑜𝑠𝑖 . The distance
dependency between 𝑆𝑖 and 𝑆 𝑗 is reflected by 𝑑 tokens between 𝑆𝑖
and 𝑆 𝑗 , i.e., 𝐼𝑖 𝑗 = {𝑥𝑝𝑜𝑠 𝑗−𝑑 , ..., 𝑥𝑝𝑜𝑠 𝑗−1}. Then, 𝑅𝑖 𝑗 is inferred by:

𝑃 (𝑅𝑖 𝑗 |𝑑 ) = 𝑃 (𝑅𝑖 𝑗 |𝑆𝑖 , 𝑆 𝑗 , 𝐼𝑖 𝑗 ) . (7)

We assume that given 𝑅𝑖 𝑗 , unmasked tokens in 𝐼𝑖 𝑗 are indepen-
dent from tokens in 𝑆𝑖 and 𝑆 𝑗 , then the likelihood maximization of
𝑃 (𝑅𝑖 𝑗 |𝑑) is equivalent to optimize the first term in Equation (4):

𝑃 (𝑅𝑖 𝑗 |𝑆𝑖 , 𝑆 𝑗 ) ∝ 𝑃 (𝑅𝑖 𝑗 |𝑑 ) . (8)

Finally, the pre-training with masked language modeling can be
decomposed into two losses:

L = L𝑅 + L𝑆 ,

L𝑅 :→𝑚𝑎𝑥 (E[log𝑃 (𝑅𝑖 𝑗 |𝐹𝐷 ) ] ), (9)

where L𝑆 is span length loss from Equation (5) and L𝑅 is span
dependency loss. The span length and position constraint are con-
trolled by the prior distributions 𝐹𝑀 and 𝐹𝐷 , respectively, i.e.,
𝑙𝑒𝑛𝑖 ∼ 𝐹𝑀 and 𝑑 ∼ 𝐹𝐷 . By properly setting the prior knowledge,
we can improve the upper bound of pre-training for NLU tasks.

2.3 POSPAN Algorithm
Various masking strategies can be achieved via the combination of
different 𝐹𝑀 s and 𝐹𝐷 s. To investigate the impact of different mask-
ing strategies conveniently, we illustrate the sampling algorithm
of POSPAN in Algorithm 1. Given a text sequence, the algorithm
first samples 𝑁 span lengths (∼ 𝐹𝑀 ) and 𝑁 inter-span position
constraints (∼ 𝐹𝐷 ), stored in vector M and D, respectively (Line
3-8). Then for each token position, we iteratively negate the value
of do_mask to obtain the span length or position constraint turn by
turn until all tokens are traversed, and select all possible spans into
the set spans (Line 9-15). Next, we remove spans from spans until
the masked token number satisfies the masking rate requirement
(Line 16). Finally, we replace the selected tokens with “[MASK]”
(Line 17-18).

We follow previous works [5, 15] to mask 15% of tokens (𝑟𝑚 =

0.15), where 80% of them are replaced with “[MASK]”, 10% are re-
placed with tokens randomly sampled from the vocabulary, and the

rest 10% are untouched. Through POSPAN, we can re-implement all
the previous masking methods and design new masking strategies
easily based on various distributions, including Normal (𝑁𝑜𝑟𝑚),
Geometric (𝐺𝑒𝑜), Uniform (𝑅𝑎𝑛𝑑) and Poisson (𝑃𝑜𝑖𝑠) distribution.
Table 1 illustrates the hyper-parameters of distributions we inves-
tigate, where the mean of these distributions are around 4 and 5
for 𝐹𝑀 and 𝐹𝐷 , respectively, so as to be comparable with previous
methods [3, 10]. By combining different 𝐹𝑀 s and 𝐹𝐷 s, we develop
several POSPAN settings to pre-train language models.

Notation Distribution 𝐹𝑀 𝐹𝐷

𝑃𝑜𝑖𝑠 Poisson 𝜆 = 4 𝜆 = 5
𝑁𝑜𝑟𝑚 Normal 𝜎=1,𝜇=4 𝜎=1,𝜇=5
𝐺𝑒𝑜 Geometric 𝑝=0.2 𝑝=0.1
𝑅𝑎𝑛𝑑 Uniform 𝑎=1,𝑏=5 𝑎=4,𝑏=6

Table 1: Hyper-parameters of different distributions.We tune
hyper-parameters of the distributions via grid search and
find the best settings.

3 EXPERIMENTS
In this section, we first introduce the experimental setup. Then, we
illustrate experimental results and conduct further discussions.

3.1 Experimental Settings
Datasets. We conduct experiments on four common types of NLU
tasks, including named entity recognition (e.g., CoNLL 2003 [19]),
sentence pair classification (e.g., MNLI [23], MRPC [6], QNLI [21]),
question & answering (e.g., BoolQ [2], COPA [17]), and machine
reading comprehension (e.g., ReCoRD [28] , SQuAD v2.0 [16], RACE
[11]). For space limitation, we omit the details of each dataset.
Considering the computational cost and experimental efficiency,
we take the popular post-training (i.e., the second-stage pre-training)
strategy [7, 30] with POSPAN instead of pre-training from scratch.
We collect the text and remove labels from all training sets for
post-training, which is about 1.5M sentences and 250M tokens. For
fine-tuning, all experiments were followed the setup in previous
works [8, 15].
Baselines. All experiments were conducted with the DeBERTaV3
[8] backbone. The following baselines are compared: (1) DeBER-
TaV3 is the publicly available model checkpoint without post-
training. (2)MLM [5] post-trains DeBERTaV3 with sub-tokenmask-
ing, that is, the span length is 1. (3) Fixed masks spans of length
4. (4)WWM [4] masks spans of the whole word with several sub-
tokens. (5) N-gram [3] conducts masking where 10/20/30/40% of
spans are in length of 1/2/3/4. (6) Geo [10] and (7) Pois [13], in
which the length of spans is sampled from Geometric and Poisson
distribution, respectively. These methods use diverse strategies of
span length masking (𝐹𝑀 s are different), but the same span position
constraint (𝐹𝐷 ∼ 𝑝𝑜𝑙𝑦𝑛(𝑟𝑚, 𝑁 )). For fair comparison, all models
are trained with the same post-training and fine-tuning corpora
and then evaluated on the same test sets as mentioned above.
Implementation Details. We load the publicly released check-
point of of deberta-v3-xsmall [8] for model initialization. The num-
ber of hidden layers and attention heads is 12 and 6, and the hidden
size, embedding size, and intermediate size is 384, 384, and 1536,
respectively. We first post-train a model for 20 epochs with batch
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Method CoNLL MNLI(m/mm) MRPC QNLI BoolQ COPA ReCoRD SQuAD RACE
DeBERTaV3 [8] 94.9 88.1/88.3 87.0 92.4 80.1 70.3 56.5/44.6 84.8/82.0 52.0
MLM [5] 95.3 88.2/88.5 88.4 92.5 80.5 70.9 56.3/44.9 84.8/82.1 52.1
Fixed 95.3 88.2/88.6 88.2 92.8 80.6 72.9 56.5/44.9 84.7/82.2 52.2
N-gram [3] 95.3 88.2/88.5 88.6 93.0 81.2 73.5 56.7/45.2 84.9/82.2 52.4
WWM [4] 95.2 88.2/88.5 88.0 92.7 80.8 71.8 56.4/44.7 84.8/82.2 52.3
Geo [10] 95.7 88.5/88.7 88.9 93.1 81.3 73.2 56.8/45.1 85.0/82.5 52.5
Pois [13] 95.6 88.4/88.7 87.5 93.0 81.0 73.9 56.7/45.1 85.1/82.5 52.3
POSPAN(WWM-𝑁𝑜𝑟𝑚) 95.5 88.3/88.5 88.5 93.1 80.9 73.3 56.9/45.0 84.8/82.3 52.5
POSPAN(𝐺𝑒𝑜-𝑃𝑜𝑖𝑠) 95.9 88.8/89.0 89.2 93.4 81.6 75.7 57.3/45.6 85.4/82.5 52.8
POSPAN(𝑃𝑜𝑖𝑠-𝑃𝑜𝑖𝑠) 95.8 88.9/89.3 88.2 93.2 81.9 75.6 57.1/45.3 85.6/82.7 53.1

Table 2: Experimental results of POSPAN. POSPAN(𝐺𝑒𝑜-𝑃𝑜𝑖𝑠) denotes 𝐹𝑀 ∼ 𝐺𝑒𝑜 and 𝐹𝐷 ∼ 𝑃𝑜𝑖𝑠. CoNLL and SQuAD represent
ConNLL 2003 and SQuAD v2.0. MNLI (m/mm) represents the two versions of MNLI, MNLI-matched and MNLI-mismatched.

Figure 1: The model performance of POSPAN with different
position constraints (𝑥-axis).

size of 512, 5K warm-up steps, LAMB optimizer [27], peak learning
rate of 1e-4 with linear scheduler. Then we follow the setups in He
et al. [8, 9] to fine-tune the models with an extra classification or
regression layer for each downstream dataset. Each model is fine-
tuned for 10 epochs with batch size of {16,32} and learning rate of
{1e-5,2e-5} with linear scheduler. We implement each model using
Huggingface Transformers [24], report the average score of 10 runs
on each dataset, and show the best result in bold with wilcoxon
test (𝑝 < 0.05) [22].

3.2 Main Results
Table 2 illustrates the experimental results. It’s observed that: (1)
All post-training models can bring further improvements compared
to the strong baseline DeBERTaV3, which shows the effectiveness
of post-training. (2) Compared with single-token masking, all span-
level masking methods yield substantial improvements, which indi-
cates the advantage of span-level masking on capturing the critical
semantics of language. (3) Our proposed POSPAN obtained the best
performance across different tasks. Specially, POSPAN surpassed
the previous best baselines by 1.8%, 0.9%, 0.6% on COPA, BoolQ,
RACE respectively. It demonstrates the superiority and necessity
of position constraint for span masking.

Previous research [14] has shown that the masking probability
can introduce a type of prior knowledge for language models. We
conjecture that POSPAN also introduces 𝐹𝑀 and 𝐹𝐷 as two kinds
of prior knowledge, where 𝐹𝑀 can help the model capture n-gram-
level sub-structures [3, 10, 25] and 𝐹𝐷 is capable of catching the

semantic dependencies among spans. Besides, the theoretical anal-
ysis in Section 2.2 also proves the necessity of both span length
distribution and position constraint distribution for language model
pre-training, which explains why POSPAN works.

3.3 Discussions
To investigate the position constraint in POSPAN, we combine
WWM, Geo, and Pois with various 𝐹𝐷 s. Figure 1 shows the model
performance under different 𝐹𝐷s on the GLUE benchmark [21],
and “𝑝𝑜𝑙𝑦𝑛” represents the span-length-only counterparts. It shows
that: (1) Position constraint distribution has a prominent impact on
the model performance. For example, POSPAN(𝑃𝑜𝑖𝑠-𝑃𝑜𝑖𝑠) improves
the Pois by 0.6%, while POSPAN(𝐺𝑒𝑜-𝐺𝑒𝑜) decreases the score of
Geo by 0.6%. (2) POSPAN with 𝐹𝐷 ∼ 𝐺𝑒𝑜 consistently harms the
original span masking methods, while other 𝐹𝐷 distributions boost
the performance of original span masking by different extent.

The above results corroborate our hypothesis, that is, span posi-
tions are indeed not independent from each other, and utilizing 𝐹𝐷
to represent dependent span positions and model contextual depen-
dency is beneficial to downstream tasks universally. Mathematically
speaking, when sampling span positions randomly, the distribution
𝑝𝑜𝑙𝑦𝑛(𝑟𝑚, 𝑁 ) promotes small inter-span distances, which prevents
span dependency modeling, thus hinders the learning of contex-
tual semantics. Similarly, 𝐹𝐷 ∼ 𝐺𝑒𝑜 also promotes small inter-span
distances and results in unsatisfying performance. Empirically, the
discrete distribution 𝑃𝑜𝑖𝑠 performs relatively better than other con-
tinuous distributions. Such performance bias caused by distribu-
tions might indicate the discrete and flexible length of dependency
in natural language.

4 CONCLUSION AND FUTUREWORK
In this paper, we propose POSPAN, a novel position-constrained
span masking method for language model pre-training. POSPAN
leverages span length and position constraint distributions to mask
tokens, and works as a general framework to unify existing span-
level masking methods. Extensive experiments are conducted to
verify the effectiveness of POSPAN on various NLU tasks. Moreover,
the theoretical analysis reveals the rationality and necessity of both
span length distribution and position constraint distribution, which
encourages language models to learn span-level semantics and their
contextual dependencies. For the future work, we will explore more
effective masking strategies by designing better 𝐹𝑀 s and 𝐹𝐷 s.
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