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ABSTRACT

Dense video captioning aims to localize multiple events from
an untrimmed video and generate corresponding captions for
each event. Fusing different modalities(e.g. rgb, flow, audio)
via transformer structure is a promising way to improve the
caption performance. However, it is challenging for the cross-
modal encoder to learn multimodal interactions due to their
inherent disparities of distribution. In this paper, we propose
a novel transformer structure with contrastive learning to
align different modalities. Specifically, to avoid the limitation
of small batch size and false contrastive targets, we design
an event-aligned momentum augmentation strategy to apply
contrast learning for dense video captioning. The experimen-
tal result shows that our proposals outperform all existing
multimodal fusion methods for dense video captioning.

Index Terms— Dense video captioning, Multimodal fu-
sion, Contrastive learning, Momentum augmentation

1. INTRODUCTION

Dense video captioning(DVC)[1, 2, 3] is a challenging task,
where the captioner should first localize multiple events from
an untrimmed video, then generate corresponding caption for
each event. Formally, a series of approaches[4, 5, 6] model
DVC as two sub-tasks, termed temporal localization and cap-
tion generation.

Given that videos typically contain information in mul-
tiple modalities (e.g. rgb, flow, and audio), it is critical to
fully utilize these information. Some recent efforts[7, 8]
seek to fuse different modalities via transformer structure,
thereby promoting the captioning performance. However, it
is insufficient to learn multimodal interactions with cross-
attention modules due to their inherent different distribu-
tions in representation space as shown in Figure 1. Recent
works[9, 10] have demonstrated that applying contrastive
learning to align textual and visual information are bene-
ficial for vision-language pretraining tasks. Thus, it seems
reasonable to align the spatial distribution between different
modalities with contrastive learning to handle this problem.

*Equal contribution to this work
T Corresponding author.
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Fig. 1. The samples of two modalities marked in blue and red
shows different distributions in representation space.

Nevertheless, less work tries to apply contrastive learning
for DVC task, because there are still two challenges: 1) how
to set the learning targets, and 2) how to enlarge the negative
sampling space. For the first challenge, it is unreasonable to
simply set the different events in a video as positive or neg-
ative samples, because there is no guarantee of whether the
events in the same video has similar content or not. For the
second, a large batch size can increase the negative sample
space, thus facilitating contrastive learning. However, it is re-
stricted by the GPU memory size and the computing cost of
DVC task. These two challenges hinder the progress of mul-
timodal alignment for dense video captioning.

In this paper, we design an event-aligned momentum aug-
mentation(EAMA) strategy to apply contrastive learning for
dense video captioning. To the best of our knowledge, this
is the first work to apply contrastive learning to dense video
captioning. Concretely, we first modify transformer to a bi-
modal structure to accommodate different modalities for con-
trastive learning. It consists of three components: a unimodal
encoder for unimodal encoding, a bi-modal encoder for cross-
modal fusing, and a multimodal decoder for linguistic decod-
ing. To construct the learning targets for contrastive learning,
we set modalities extracted from the same event as positive
pairs and exclude the events from the same video, since those
events may disturb each other. Conversely, the cross-modal
pairs of events from different videos will be treated as neg-
ative pairs. Moreover, we also designed a slow-update mo-
mentum queue to store adequate negative samples from other
videos, thus enlarging the negative sampling space to facil-
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Fig. 2. The architecture of our model. It consists of two modules: the event localization module(BMT[5]) and the event caption-
ing module. An event-aligned momentum augmentation strategy is designed to capture more negative samples for contrastive
learning. The captioning objective is applied for encouraging the model to predict fluent captions, while the contrastive objec-
tive is exploited to align the unimodal representations before fusion. For brevity, we omit FFN layer in the encoder.

itate contrastive learning. Experiments conducted on Activ-
ityNet Captions dataset demonstrate the effectiveness of our
approach compared with existing multimodal fusion methods.

2. METHODOLOGY

In this section, we introduce each part of the proposed ap-
proach as shown in Figure 2. Note that we use rgb and flow
modalities to illustrate our model.

2.1. Event Localization Module

Here, we employ the pre-trained event localization model[8]
to obtain the event proposals P = {(start;, end;, score;) }1<

j=1

Then, we map V and F' to obtain event-aligned features based
on the event proposals P, yielding a rgb sequence of each pro-
posal ZV € RL’*4" and a flow sequence of each proposal
ZF € R >4 where the reb and flow features are defined
asV € RE4" and F € REX4 respectively.

2.2. Captioning Module

Unimodal Encoder. We apply transformer[11] encoder to en-
code the event-aligned features Z and ZV, for its power-
ful ability of representation learning. It contains a stack of
N encoding layers, each of which is composed of two sub-
layers: multi-head self-attention and feed-forward neural net-
work(FFN):

vV = FFN(MultiHeadAttention(ZV, Z")) N

1
v = FFN(MultiHeadAttention(Z¥, ZF)) M

Notably, we omit the residual connection and layer normal-
ization in each layer for a concise explanation. The subse-
quent blocks follow the same principle.

Bi-modal Encoder. Bi-modal encoder are structurally
similar to unimodal encoder, except that an additional multi-
head cross attention is added in each layer to fuse unimodal
outputs " and v¥', which is defined as follows:

XV = MultiHeadAttention(vV , ") N
xF' = MultiHeadAttention (v, vT)
XV = FFN(MultiHeadAttention(x" , v"))
XV = FFN(MultiHeadAttention(x*,v"))
2

where V¥ € RE' %" represents the flow-attended rgb fea-

tures and x¥'V € RL'*?" represents the rgb-attended flow
features.

Multimodal Decoder. The multimodal decoder extends
the bi-modal structure based on a N-layer transformer de-
coder, and adds a two-layer feed-forward network to integrate
the bi-modal outputs ¥V ¥ and x*"V. Suppose the input for
time step £ is Wi_1 = (wo, w1, ..., ws_1),w; € R¥*L, the
multimodal decoder is defined as:

Rt = MultiHeadAttention(wi—1, Wi_1) N

kYt = MultiHeadAttention (i, xV'F)
kEYV = MultiHead Attention (i, xF'V)
ki = FEN(FFN([sYF,kFV))

3)

where «; is the output for the time step .

We feed «; into a fully-connected layer with the softmax
activation which generates the probability of the current word
p(w|Wi—1) by mapping the caption features of size d into a
dimension |X| corresponding to the size of the vocabulary.

2.3. Event-aligned Momentum Augmentation

Event-aligned momentum augmentation aims to learn bet-
ter unimodal representations before fusion by encouraging



matched event pairs to obtain higher similarity scores. We
first employ an attentional pooling to aggregate the unimodal
context feature and perform dimensionality reduction for each
event in each mini-batch. Then, we combine the different con-
text unimodal features as rgb-flow pairs for contrastive learn-
ing(CL). To overcome the size limitation of the mini-batch,
inspired by [12], we maintain two queues to store the most
recent M rgb-flow pairs sampled from other mini-batches.
And the queues are dynamically updated by replacing the
premier mini-batch with current mini-batch during training.
Different from [12], we also propose two improvements
to adapt to dense video captioning task: (¢) different events
in the same video still have chance to be maintained in the
queues, which may lead to false contrastive targets and neg-
ative effects for CL. To solve this problem, we mark each
negative samples in the queues with a video id, those nega-
tive samples that have the same video id with current event
will be masked when calculating the contrastive loss. (i7) Al-
though the queues enlarge the negative sampling space, it is
inevitable that those unimodal context features in the queues
will be modified during training iteration. The frequently up-
dated queues lead to unstable training and make the model
hard to converge. To solve this issue, we design a slow-update
momentum encoder composed of unimodal encoder and at-
tentional pooling to stably produce unimodal context feature
¢" and ¢/ . Here, we apply momentum method[13] to optimize
momentum encoder and restrain the updating speed:

em — Bem + (1 - B)eu (4)

where 6,,, denotes the parameters of the momentum encoder,
0,, denotes the parameters of the unimodal encoder and 5 €
[0,1) is a momentum coefficient.

2.4. Training Objective

Captioning Objective. For captioning generation, we di-
rectly optimize KL-divergence by loss function defined as:

T
Léap = ZKL(log(p(wAWt—l))vyZ) o)

i=1

where y; € |X| is the current Ground-Truth caption.
Contrastive Objective. Suppose we have obtained the
unimodal contexts and the momentum queues from the event-
aligned momentum augmentation, we calculate the softmax-
normalized rgb-to-flow and flow-to-rgb similarities as:

exp((¢” - dh)/T)

V2f (v
P (@) = (6)
Sy exp((§¥ - dh)/7)
i L g
pf2(@) = e Tl ) )

M JPE
Y m=1 €xp(q - 4 /7)
where ¢ denotes the normalized unimodal contexts and ¢,,, de-
notes the normalized momentum contexts in current queues.

Let 22/ and 372V denote the ground-truth one-hot similarity,

where negative pairs have a probability of 0 and the positive
pair has a probability of 1. The rgb-flow contrastive loss is
defined as the cross-entropy between p and y:

A 1 v v v v
Loon(d”,¢7) = §[CE(y7ff,pn3f)+CE(yff P50 ()

where C'E represents the cross-entropy function. Finally, we
jointly train the above two losses for dense video captioning.

3. EXPERIMENTS

3.1. Datasets and Evaluation

All our experiments were conducted on the ActivityNet Cap-
tions dataset[1], which contains 20k long untrimmed videos
and follows a standard split including 10009 training videos,
4925 validation videos, and 5044 testing videos. Each video,
on average, lasts 120 seconds and contains 3.65 temporally
localized captions. To evaluate the captioning performance,
we take the BLEU[14] and METEOR[15] as metrics.

3.2. Implementation Details

Following the settings of previous works[5, 7], we employ the
I3D[16] network to obtain rgb and flow features and adopt
VGGish model[17] to extract audio features. Note that the
flow features are captured from the optical flow frames[18]
that represent the motion between video frames. Besides, we
use GloVe model to embed the captions. In transformer, the
number of layers N is set as 2, and the number of attention
heads is 8. In contrastive objective, the temperature 7 is set
as 0.07, and the dimension of learnable queries is 128. The
momentum coefficient 3 is set as 0.995, and the size of the
queue is set as 2048. During training, our model is trained for
40 epochs with a batch size of 32. ADAM is used as optimizer
with a learning rate 10° and smoothing parameter v as 0.7.

3.3. Main Results

Here we compare our model with following baselines: (1)
WSDEC]19] applying cross-attention to fuse different modal-
ities, (2) MDVC[7] and (3) BMT[8], both are transformer-
based multimodal fusion models, (4) DVCUSI[20], which
injects unsupervised semantic information into multi-modal
fusion model. For fair comparison, we report the perfor-
mances generated by the models trained with rgb and flow
features. The main comparison results! are illustrated in Ta-
ble 1. Here, we conduct the experiments with two different
settings: captioning with ground truth events and captioning
with predicted events. It can seen that our model surpasses
all previous approaches in terms of all the metrics under

INotice that we excluded audio information in the main experiments, for
it is more difficult to align the audio and rgb modalities compared with flow
and rgb modalities. For more analysis, please refer to section 3.5.



Unaligned: ["A woman is standing in a room talking to
the camera", "the woman cleans the floor", "She then
puts the mop in the bucket and puts it in the bucket"]

Aligned: ["A woman is seen speaking to the camera
while holding a mop", "She puts the mop on the floor",
"She then vacuums the floor with the mop"]

GT: ["A woman is sweeping the floor in a kitchen",
"She grabs a green mop and pours it on the floor", "She
then mops the floor with the mop"]

Fig. 3. The examples predicted by our model. The ‘“un-
aligned” means removing contrastive learning.

Table 1. The results of the dense video captioning task in
terms of BLEU4(B4), METEOR(M). 1 denotes the models
trained with unsupervised semantic information.

GT proposals Predicted proposals

Method

B3 B4 M B3 B4 M

WSDEC[19] 3.04 146 723 185 090 493

MDVC[7] - 1.73  9.87 - - -
BMTI8] 377 166 1029 285 130 747
Ours 430 186 1052 3.01 143 7.8

DVCUSI[20]" 432 185 1055 3.68 181 826
Ours’ 443 194 1055 375 187 833

two different settings. Specially, our model also achieves
superior performance against previous method[20] by feed-
ing the unsupervised semantic information into the proposed
model. Here, the unsupervised semantic information denotes
a sequence of integers that captured from the video frames.
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Fig. 4. Cluster visualization of unimodal contexts in a mini-
batch. Dots of the same color represent the positive pairs.

3.4. Ablation Study

In Table 2, we conduct the experiments under different con-
ditions. We first verify the performance by using different
modalities. The results show that the rgb+flow yields better

Table 2. The performances in terms of different conditions.

Conditions Metrics

Rgb Flow CL EAMA B3 B4 M

v 3.66 153 10.26

v 324 138 9585
v v 419 172 1051
v v v 425 1.80 1047
v v v v 430 1.86 10.52

results compared to the rgb-only model or flow-only model.
Besides, the model with contrastive learning(CL) achieves
better performance, which shows the importance to align
the multiple modalities. Furthermore, we also investigate
the effectiveness of event-aligned momentum augmenta-
tion(EAMA) strategy. It shows EAMA improves the caption-
ing performance further for it enlarges the number of negative
pairs and benefits for feature alignment.

3.5. Case Study and Visualization

In the case study of Figure 3, we compare the dense captions
predicted by our model with aligned feature and the unaligned
feature. It shows that by directly fusing without alignment, the
two different modalities failed to promote each other during
generation. The video shows a woman is mopping the floor.
The unaligned model generates “She then puts the mop in the
bucket and puts it in the bucket,” which is inconsistent with
the rgb content. When we apply the aligned-fusion strategy,
the generated captions are more coordinated and accurate.

We also conduct visualization experiment for the sampled
cases in Figure 4. Here, we use the t-SNE algorithm to per-
form dimensionality reduction and obtain 2-dimensional vec-
tor for each case. Figure 4(a) is the case visualization without
contrastive learning, while Figure 4(b) shows the visualiza-
tion with contrastive learning. It can be seen that the distance
between the positive pairs get closer with contrastive learn-
ing, which demonstrates that the CL can help the model align
the multimodal features. Moreover, Figure 4(c,d) reveals it is
more difficult to align the audio and rgb modalities compared
with flow and visual modalities. We conjecture this is due to
the weak correlation between the rgb content and the audio
content. Therefore, it is more beneficial and effective to align
rgb and flow content with contrastive learning.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel approach with event-
aligned momentum augmentation to produce cross-modal
alignment between different modalities. This was the first
work to apply contrastive learning to DVC. The experimental
results demonstrated that our model outperforms all com-
pared methods. In future work, we will employ the distillation
model to overcome the mismatch between rgb-flow pairs.
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