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Abstract
End-to-end spoken language understanding (E2E-SLU) has
witnessed impressive improvements through cross-modal (text-
to-audio) transfer learning. However, current methods mostly
focus on coarse-grained sequence-level text-to-audio knowl-
edge transfer with simple loss, and neglecting the fine-grained
temporal alignment between the two modalities. In this work,
we propose a novel multi-grained cross-modal transfer learning
framework for E2E-SLU. Specifically, we devise a cross atten-
tion module to align the tokens of text with the frame features of
speech, encouraging the model to target at the salient acoustic
features attended to each token during transferring the semantic
information. We also leverage contrastive learning to facilitate
cross-modal representation learning in sentence level. Finally,
we explore various data augmentation methods to mitigate the
deficiency of large amount of labelled data for the training of
E2E-SLU. Extensive experiments are conducted on both En-
glish and Chinese SLU datasets to verify the effectiveness of our
proposed approach. Experimental results and detailed analyses
demonstrate the superiority and competitiveness of our model.
Index Terms: spoken language understanding, cross-modal
transfer learning, cross attention, contrastive learning

1. Introduction
Spoken language understanding (SLU) aims to comprehend
user query given spoken utterance, so that dialogue systems can
respond properly based on the query intent. Conventional SLU
systems rely on the pipeline method consisting of two steps:
1) automatic speech recognition (ASR) model to convert audio
signals from speech into text, and 2) natural language under-
standing (NLU) model to predict the intent from ASR output
text. In comparison, end-to-end (E2E) SLU considers a single
model that produces result directly from input audio without in-
termediate text output from ASR, which not only avoids error
propagation from ASR to NLU, but also preserves useful in-
formation in speech signals such as prosody, pitch, and speech
rate that are lost after ASR. Therefore, E2E-SLU has become
increasingly popular and many efforts have been taken to catch
up on the performance of the pipeline method [1–11].

Nevertheless, because of its high complexity with informa-
tion of many aspects contained inside, it is generally difficult
for raw audio signal to extract suitable linguistic features to
solve language understanding tasks [1, 2]. In this respect, a
lot of work has attempted to resort to text form, a more com-
pressed meaning representation, by leveraging knowledge dis-
tillation [12, 13] to transfer textual knowledge of the teacher
model, i.e. NLU model trained on text data, to the student E2E-
SLU model [7–11]. Specifically, these approaches mostly fo-

† Equal contribution. Work done during internship at JD AI.

cus on coarse-grained transfer with the audio-text pair: align-
ing the sequence-level audio representations produced by E2E-
SLU model with the fixed text representations of NLU model
mainly through minimising L1 [8,9] or L2 loss [7,10,11]. How-
ever, simple distance losses only refine single point pairs in the
two representation spaces without harnessing the relationships
of those pairs, thus incapable of aligning the two spaces in dis-
tributional perspective due to the inherent disparities between
the two modalities. Furthermore, explicit alignment between
audio frames and text tokens are neglected, which poses a great
challenge for the text-to-audio transfer for SLU. Since the ap-
prehension about user intent usually rests on certain keywords
like entities, such fine-grained cross-modal alignment will be
crucial in allowing E2E-SLU model to concentrate on more im-
portant audio frames for effective utterance interpretation.

In this work, we propose a novel Multi-grained Align-
ment Transfer Learning framework (MATL) for E2E-SLU.
MATL is derived from the standard knowledge distillation ap-
proaches [7,14], where the parameters of E2E-SLU model with
speech input are updated according to an already trained NLU
model when fed with the corresponding text. Concretely, we
devise a cross attention (CA) module [15–17] for fine-grained
alignment between the tokens of text and the frame features of
speech, encouraging the E2E-SLU model to target at the salient
acoustic features attended to each token during transferring the
semantic information. To facilitate cross-modal representation
learning in sequence level, we leverage contrastive learning
(CL) [18–20] to pull together true (positive) text-audio pair rep-
resentations among randomly sampled negative pairs. Addi-
tionally, we explore various data augmentation (DA) methods
within MATL to mitigate the data scarcity issue of text-audio
data. Extensive experiments are conducted on two SLU datasets
with different languages: 1) the public English SLURP [21] and
2) our newly built in-house dataset JDTEL. Experimental re-
sults demonstrate that MATL outperforms the strong baselines
in E2E-SLU (+2.29 on SLURP and +1.12 on JDTEL in accu-
racy). Detailed analyses show that both CA and CL are instru-
mental to the success of cross-modal transfer through text-audio
alignment in both granularities. Moreover, the performance of
MATL can be further boosted by different DA methods, closing
the gap to the oracle NLU model, advancing towards service-
able E2E-SLU system in the real world.

2. Methodology
The overview architecture of our MATL framework is illus-
trated in Figure 1. MATL consists of a text-based NLU model
(left green part), and an audio-based E2E-SLU model (right
blue part). It follows the standard knowledge distillation pro-
cedure [12,13] which has been proven effective in both text and
audio domains [7, 14]. The NLU model, a BERT-based Trans-
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Figure 1: The architecture of our proposed model MATL.

former [22, 23] of layer number Lt, is finetuned first on the
labelled text NLU data {t̃, yt}nt

1 of nt training instances, and
fixed as the teacher model. It then transfers the textual knowl-
edge to the student E2E-SLU model, a more shallow BERT with
Ls layers on top of a speech encoder with waveform input, by
instructing the student model to mimic the representations of
various layers from the teacher model through unlabelled text-
speech pairs {t, s}n1 . Finally, the trained E2E-SLU model is
evaluated on labelled speech SLU data {s̃, ys}ns

1 .

2.1. Fine-grained token-frame alignment with CA

For both BERTs in the NLU and E2E-SLU models, each layer
i will output a hidden representation sequence Hi ∈ Rl×d of
length l and dimensionality d, where each representation con-
tains the contextual information for the specific step (token for
NLU, frame for E2E-SLU), through multi-head self-attention
with Nh attention heads, each being Ai,nh ∈ Rl×l [22].To en-
able such fine-grained information transfer from text to audio,
we adopt the previous approaches based on TinyBERT [7, 14]
to fit the hidden representations and attentions of each layer in
the student model to the certain layers of teacher model:

Lhid =

Ls∑
i

Lh(H
g(i)
t ,Hi

s)

Latt =

Ls∑
i

Nh∑
nh

La(A
g(i),nh
t ,Ai,nh

s )

(1)

where Ht/Hs and At/As are the hidden and attention repre-
sentations for text/speech, Lh/La are the distillation losses for
each hidden layer and attention head. g(·) is the same function
in [14] to map each student layer to a particular teacher layer.

Due to the inherent disparities between both modalities, the
sequence length of speech (ls) is generally longer than that of
text (lt) in both Ht/Hs and At/As, with Ht ∈ Rlt×d and
At ∈ RNh×lt×lt (similarly for Hs and As). Thus, it is not
feasible to directly apply loss functions between two represen-
tations of different lengths, and simply padding text token rep-
resentations to the same length of speech is not optimal either,
as it will cause the frame representations in audio to be aligned
to the meaningless padding representations in text.

To this end, we introduce the cross attention (CA) mech-
anism to capture the fine-grained interactions between text to-
kens and speech frames, which has been previously validated
in token-phoneme scenario [16]. Specifically, for Hs of layer i
and its corresponding teacher layer Ht (we omit the superscript
i and g(i) for simplicity), CA is formulated as the correlation
map between the hidden representations of tokens and frames
followed by a convolution kernel K ∈ Rls×ls with normalisa-
tion over the speech sequence:

Dataset #Intent Train Dev Test Avg dur (s)

SLURP 828 11514 2033 2974 2.96

JDTEL 16 4314 1453 1433 3.13

Table 1: Dataset statistics. Avg dur is average audio duration.

Aca = Softmax(HtH
T
s K),

ls∑
k

Aca(j, k) = 1 (2)

where each row Aca(j, ·) is the attention vector for the token j
over the whole speech sequence. Then the aligned hidden audio
representation is obtained by weighting Hs with Aca, and the
student hidden layer distillation loss Lh can be calculated by
minimising the mean squared error between the text and aligned
speech hidden representations:

Lh = MSE(Ht,AcaHs) (3)

To preform the distillation on each attention head, the audio
attention As is transformed accordingly:

La = MSE(At,AcaAsA
T
ca) (4)

2.2. Coarse-grained sequence alignment via CL

The mainstream distillation methods on the sequence-level rep-
resentations for BERT, i.e. the [CLS] token representations, are
for student model to imitate teacher model with L1 [8, 9] or
L2 loss [7, 10, 11] on a single text-audio pair at output layer.
This does not provide strong teacher signal and cannot capture
the difference in semantic relations among multiple pairs. In-
spired by recent advance in contrastive learning (CL) for cross-
modal transfer [24–26], we introduce a cross-modal contrastive
loss within a mini-batch B of text-audio pairs to transfer the
sequence-level semantic information from text to audio:

Lcl = −
|B|∑
i

Ls∑
j

log
exp

(
sim(t

g(j)
i ,aj

i )/τ
)∑|B|

k ̸=i exp
(
sim(t

g(j)
i ,aj

k)/τ
) (5)

where (tg(j)i ,aj
i ) are the sequence-level representations for the

i-th unlabelled text-audio pair within B generated by the g(j)-
th layer of NLU BERT and the j-th layer of E2E-SLU BERT,1

τ is the temperature hyperparameter, and sim(·, ·) is the cosine
similarity. Given a true (positive) text-audio pair, the negative
pairs are implicitly formed by iterating audio representations in
the training batch. The benefit of this contrastive loss is to pull
together the audio representations closer to their text represen-
tations, and push away from those of other texts.

2.3. DA within MATL

Due to the lack of high-quality labelled SLU data, as well as the
nature of knowledge distillation and contrastive learning that
they become more competitive with more data, data augmenta-
tion (DA) methods are essential for the success in cross-modal
transfer [27]. We focus on distortion-based DA methods, which
only disturb model input with preset noise, and explore various
DA strategies within different parts of MATL (see Figure 1): 1)
We apply Cutoff [28] by randomly erasing 15% of the tokens or
feature dimensions from input sequence of both NLU and E2E-
SLU BERTs to enable the model to focus on the whole sequence
instead of a certain part of it; 2) For Add Noise [29], Gaussian

1We add a trainable [CLS] embedding in front of the E2E-SLU
BERT input which is the output of speech encoder.



Models Modality Information Layers SLURP JDTEL

Acc Macro-F1 Acc Macro-F1
Oracle: NLU model Transcription 12 86.28 85.92 74.60 68.03
B1: Wav2Vec2 Audio 24 74.71 69.55 59.94 50.21
B2: E2E-SLU model Audio 24+4 75.15 71.16 61.13 50.25
STD [7] Transcription→ Audio 24+4 75.82 71.86 63.01 53.98
SPLAT-seq [8] Transcription→ Audio 24 76.43 72.72 59.67 46.36
XSTNet [3] Transcription & Audio 24+12 75.29 71.15 60.92 50.75
MATL Transcription → Audio 24+4 78.72 73.97 64.13 54.69

- DA Transcription → Audio 24+4 77.47 73.12 63.94 54.30
- DA - CL Transcription → Audio 24+4 76.03 71.67 63.71 54.24
- DA - CL - CA Transcription → Audio 24+4 75.00 71.57 63.08 53.90

Table 2: Average test results in accuracy and Macro-F1 score of MATL and other models over three runs. The best results are in bold.

noise is added to the input embeddings of NLU BERT, E2E-
SLU speech encoder, and E2E-SLU BERT to smooth the input
embedding space; 3) Dropout [30] randomly sets elements in
the embedding layer to zero by a specific probability and is ad-
vocated as a better data augmentation method for text [19]. 4)
SpecAugment (SpecAug) [31] operates on the log-mel spectro-
gram of the input audio to focus less on the features of a par-
ticular frequency or time, and more on the entire spectrum. We
apply a modified version to the raw waveform by masking its
time steps and channels [32].

Finally, label information is distilled through the soft cross
entropy loss from the logits of teacher to student models:

Lpred = CE(logitst, logitss) (6)

and the full training objective for MATL is the weighted sum of
the distillation losses and contrastive loss:

LMATL = α1Lhid + α2Latt + α3Lpred + α4Lcl (7)

where α1, α2, α3, and α4 are hyperparameter weights.

3. Experiments
3.1. Dataset

Experiments are conducted on two SLU datasets in different
languages, where text-audio pairs along with their intent la-
bels are available.2 Their statistics are shown in Table 1: 1)
SLURP [21] is a new challenging benchmark dataset for SLU.
It contains 18 scenarios, such as music and cooking, with 46 de-
fined actions, e.g. ticket and coffee. We concatenate them and
use scenario action as the intent. Since a text contains multi-
ple audios, we choose the first audio for each text in the original
file. 2) JDTEL is a Chinese SLU dataset for intent classifica-
tion, which is collected from our online voice-enabled customer
service bot. The audios are from real users after anonymisation,
and the texts are manually transcribed.

3.2. Training details

To facilitate flexible experiments in multiple languages, we ini-
tialize our NLU text encoder with bert-base-multilingual-cased
(mBERT) that has 12 Transformer layers and 768 hidden size.
We use the Wav2Vec2 [32] multilingual variant wav2vec2-xls-
r-300m speech encoder, which contains 24 layers and 1024 hid-
den units and is further updated during knowledge distillation.

2The well known Fluent Speech Commands (FSC) dataset [2] is not
used due to its short text data with easiness leading to its test accuracy
in most work over 99%.
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Figure 2: Performance visualisation for embedding layer DA
of both modalities (a) and DA for audio input (b).

The E2E-SLU BERT has the same architecture as mBERT, ex-
cept that the number of layers is 4. To connect Wav2Vec2 and
E2E-SLU BERT, we first apply a CNN layer to compress the
speech length, and then an MLP layer converts the representa-
tion dimensionality from 1024 to 768. The values α1, α2, α3

and α4 are set to 0.1, 0.1, 0.8 and 1.0. The temperature τ is
1.0. These hyperparameters are tuned on the SLURP develop-
ment set. In DA, the mean and variance of the Gaussian noise
is 0 and 0.01 in teacher and student BERT. In Wav2Vec2, the
noise is σ∗n(t), where σ ∈ [0.001, 0.015] is the amplitude fac-
tor and follows uniform distribution, and n(t) is the Gaussian
noise of mean 0 and variance 1 [29].

3.3. Main results and ablation study

We compare our proposed MATL framework with several base-
lines: 1) STD [7] can be seen as a simplified version of MATL,
which is trained with Lhid and Latt by padding text and speech to
the same sequence length along with Lpred using the true label
information; 2) SPLAT-seq [8] aligns the sequence-level repre-
sentations of both modalities by minimising L1 loss; 3) XST-
Net [3] represents another paradigm of knowledge transfer by
performing multi-task training for both modalities on a shared
encoder, which has shown strong performance in E2E speech
translation. Additionally, we also compare uni-modal baselines
for the upper (text) and lower (speech) bound reference. The
Oracle is our NLU teacher model finetuned and tested on tran-
scribed text data, whereas Wav2Vec2 (B1) is our speech en-
coder and B2 is our full E2E-SLU model. Both baselines only
exploiting speech information without knowledge transfer.3

Table 2 illustrates the experimental results with accuracy
and macro-F1 score are reported as as evaluation metrics. It’s
observed that, the performance of B1 and B2 is far behind Or-
acle on both datasets, clearly manifesting the difficulty in lan-

3For fair comparison, all baselines use the same pretrained mBERT
text encoder and/or Wav2Vec2 speech encoder as initialisation.
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Figure 3: Visualisation of cross attention map. Row indicates
speech time intervals and column for text tokens.

guage understanding task only with audio signals and emphasis-
ing the necessity and potential in cross-modal transfer for E2E-
SLU. For knowledge distillation methods, all the three base-
lines can improve the performance over B1 and B2 (except for
SPLAT-seq and XSTNet in Chinese), corroborating the useful-
ness and complementarity of text information in semantic trans-
fer for E2E-SLU models. In contrast, our MATL produces the
best results, consistently outperforming all the baselines by a
significant margin on both datasets (+2.29 on SLURP and +1.12
on JDTEL in accuracy, p < 0.05 with student’s t-test over three
runs). We also conduct further ablation study by incrementally
removing DA (- DA), CL (- DA - CL) and CA (- DA - CL -
CA) and the results become worse, showing that they are all
essential for MATL in cross-modal transfer. Besides, note that
even without DA, MATL still beats all baselines, indicating our
multi-grained alignment with CA and CL is more effective than
single level alignment (e.g. STD and SPLAT-seq).

3.4. Discussion

The effect of DA. Here we study how various DA strategies
mentioned in §2.3 influence the model performance. 1) We in-
spect the DA methods applied to the BERT embedding layers
of both NLU and E2E-SLU models by enumerating the combi-
nations of the three methods and displays their corresponding
performance in Figure 2 (a), where the row indicates strategies
for E2E-SLU BERT and the column for NLU BERT. In gen-
eral, Dropout and (Token/Feature) Cutoff are the two most ef-
fective strategies, better than Add Noise for both modalities.
The best performance is achieved by equipping NLU BERT
with Dropout and E2E-SLU with Cutoff. This is possibly be-
cause the inherent representation disparities between the two
modalities, where Cutoff employed on the longer speech repre-
sentations helps to discard redundant features whereas Dropout
is a more refined regularisation method for text representa-
tions to retain important information. 2) Atop the best strat-
egy for BERT embeddings, we then consider DA approaches
to the waveform input of Wav2Vec2. Figure 2 (b) presents that
SpecAug, tailored for speech, indeed performs the best, gener-
ating the gain around 1 absolute point over Dropout.
Visualisation for CA. Figure 3 visualises CA map between the
middle (second) layer in E2E-SLU BERT and its correspond-
ing NLU BERT layer for more clear semantic relations [33,34].
The phonemes representing speech appearing in the approxi-
mate time interval are labelled in row according to [16], together
with text tokens in column. Evidently, the phonemes covering
stressed syllables are well aligned with their matching tokens
(w ah → what), while silence generally does not map to any
token, indicating that MATL has enabled fine-grained semantic
transfer through CA.
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Figure 4: Results on increasing unlabelled text-audio pairs.

Train Language Test Langeage Text Audio
English English 86.28 78.72
Chinese Chinese 74.60 64.13
English+Chinese English 86.08 78.51
English+Chinese Chinese 74.88 64.43

Table 3: Crosslingual and mono-lingual results with MATL.

Knowledge distillation with more data. To unlock the full
potential of cross-modal transfer learning, we experiment on
adding more text-audio pairs without intent labels. Both in-
task and out-of-task data are explored, where in-task data comes
from the same SLU task (e.g. we double the query size of
JDTEL, and reduce the SLURP data by half as baseline), and
out-of-task data comes from the public datasets (e.g. 5.7k FSC
data [2] for English and 4.3k Aishell data [35] for Chinese). We
conduct the experiments for each training size twice, with and
without our DA methods, and present the results in Figure 4.
The results demonstrate that more unlabelled pairs are benefi-
cial and the gain brought by in-task data seems to be larger.
Notably, by adding just 4.3k in-task data for JDTEL improves
the results drastically, much closer to the text Oracle, which
hints the huge potential of MATL in real applications. Besides,
despite the usefulness with more data, DA methods can still en-
hance the model performance on top of that, which strengthens
again the efficacy of our DA approaches.
Towards crosslingual E2E-SLU with MATL. The ultimate
goal for a single crosslingual E2E-SLU model [11,17] has now
become more feasible with MATL thanks to the pretrained mul-
tilingual text and speech encoder. Here we perform crosslingual
training by merging SLURP and JDTEL, and apply MATL to
learn a single crosslingual E2E-SLU model. Table 3 shows a
single crosslingual MATL can further improve on JDTEL (Chi-
nese) with a slight drop in SLURP (English), indicating there is
a synergy between the text and audio results and MATL’s capa-
bility on crosslingual knowledge transfer.

4. Conclusions
In this paper, we presented MATL, a multi-grained alignment
framework, to transfer knowledge from text to speech for E2E-
SLU, containing three components. CA was devised for fine-
grained token-frame alignment, while CL was leveraged for
coarse-grained sequence-level alignment respectively. Besides,
DA was introduced to bridge the gap between the two modal-
ities. Experimental results demonstrated the superior perfor-
mance of MATL and the importance of each component. Fur-
ther analyses revealed that adding more unlabelled data, either
in-task or out-of-task, improved the model performance. And
a single E2E-SLU model could be obtained through MATL
through crosslingual training to achieve competitive results
against its mono-lingual counterpart. In the future, we will ex-
plore linguistic information from different levels and granulari-
ties in alignment, e.g. morphology and syntax, for more effec-
tive cross-modal transfer.
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