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Abstract
End-to-end Automatic Speech Recognition (ASR) models are
usually trained to optimize the loss of the whole token se-
quence, while neglecting explicit phonemic-granularity super-
vision. This could result in recognition errors due to similar-
phoneme confusion or phoneme reduction. To alleviate this
problem, we propose a novel framework based on Supervised
Contrastive Learning (SCaLa) to enhance phonemic represen-
tation learning for end-to-end ASR systems. Specifically, we
extend the self-supervised Masked Contrastive Predictive Cod-
ing (MCPC) to a fully-supervised setting, where the supervision
is applied in the following way. First, SCaLa masks variable-
length encoder features according to phoneme boundaries given
phoneme forced-alignment extracted from a pre-trained acous-
tic model; it then predicts the masked features via contrastive
learning. The forced-alignment can provide phoneme labels to
mitigate the noise introduced by positive-negative pairs in self-
supervised MCPC. Experiments on reading and spontaneous
speech datasets show that our proposed approach achieves 2.8
and 1.4 points Character Error Rate (CER) absolute reductions
compared to the baseline, respectively.
Index Terms: supervised contrastive learning, masked con-
trastive predictive coding, automatic speech recognition

1. Introduction
In recent years, the accuracy of end-to-end Automatic Speech
Recognition (ASR) systems has been significantly improved for
various datasets [1–5]. Typically, the models are optimized to
improve the average performance over the entire sequence when
mapping an input speech to an output character or word se-
quence, lacking explicit phoneme level supervision. They are
powerful enough to learn latent representation partially corre-
sponding to phonemes from each frame [6]. However, the mod-
els are still not robust to phonemic issues like similar-phoneme
confusion [7] as well as consonant or vowel reduction [8].

Contrastive learning has shown great potential in address-
ing the phonemic issues of ASR tasks – a variety of masking
and contrasting strategies have been proposed to learn speech
representations for downstream tasks [9–13]. Recently, most
existing contrastive learning based ASR systems assume a self-
supervised setting [14]. Masked Contrastive Predictive Cod-
ing (MCPC), proposed in Wav2vec2.0 [15], is one of the most
representative methods. It masks a consecutive frame of the
encoder features with a fixed/random length, then selects an-
chor and positive samples to obtain positive pairs from the same
masked indices of the defined context features and target fea-
tures, and randomly selects the negative samples from other in-
dices of the target features to obtain negative pairs. The model
is then trained to discriminate the anchor/positive features from
a set of negative features via a contrastive task. However, ap-

(a) Phoneme-level forced-alignment of a Mandarin speech

(b) Unlike self-supervised MCPC (in purple/regular font), SCaLa (in
red/italic font) masks phonemes based on boundary information on en-
coder features1, and constructs contrastive feature pairs from context fea-
tures and target features with mitigation of noisy negative pairs. If the
first “q0” in context features is selected, the second “q0” in target fea-
tures should not be selected as the negative features for contrasting.

Figure 1: Advantages of SCaLa using phoneme-level forced-
alignment (involves labels and boundaries) as supervision over
MCPC [15], in terms of masking and contrasting strategies.

plying MCPC to unlabeled data is challenging in mask length
selection and noise reduction (caused by negative samples). As
shown in Fig. 1: (1) Since phonemes usually have various
lengths in speech, masking with a fixed/random length would
ignore the boundaries between adjacent phonemes, which may
damage the model on learning phonemic representation ef-
fectively [8, 16]. (2) In contrastive learning, the indices of
negative features for contrasting are randomly selected [15].
Hence, there might exist noisy negative pairs. For example,
the anchor/positive-negative pairs may come from the same
phoneme, or both of them may be silence or background noise,
etc. As referred in [17], noisy negative samples will compro-
mise the effectiveness of the feature representation.

To address the above challenges in self-supervised MCPC,
we propose a novel framework named Supervised Contrastive
Learning (SCaLa) for end-to-end ASR systems. Unlike previ-
ous self-supervised studies, SCaLa applies MCPC in a fully-
supervised manner, which has the following two advantages in
masking and contrasting strategies, respectively. First, the mask

1Masking is for selecting contrastive pairs and is actually performed
on encoded features only; the masks on the context features are pre-
sented here merely for showing the features being selected.



Figure 2: Model architecture of SCaLa. A CTC-based ASR sub-task is combined with the proposed contrastive sub-task that leverages
a forced-alignment model to perform phoneme masking and contrastive learning. The backbone CTC-base ASR network is composed
of a successive stack of Convolutional (Conv) layers, Self-Attention Blocks (SABs), and Fully Connected (FC) layers. In the proposed
contrastive sub-task, masked items from context features are selected as anchors (associated with phoneme “k”), with the same indices
in target features taken as positive samples correspondingly; while items with other indices from target features are selected as negative
samples (associated with different phonemes, e.g. “@U”).

length is customized for each particular phoneme duration, i.e.,
the masked unit can be a complete phoneme. This will help
improve the prediction accuracy of reduced consonants or vow-
els in speech [8]. Specifically, we perform forced-alignment
between utterances and their labeled transcription to obtain the
phoneme labels and boundaries (shown in Fig. 1(a)). Then the
encoder features are masked according to phoneme boundaries
to help the model learn phonemic representation explicitly. Sec-
ond, the noisy anchor/positive-negative pairs are mitigated by
selecting the negative features based on the phoneme forced-
alignment labels (shown in Fig. 1(b)). Although the alignments
may not be perfect, the proposed method can still largely re-
duce noisy negative pairs empirically, e.g., same-phoneme pairs
or silence pairs. Hence the ASR model can learn better latent
representation by phoneme discrimination.

To train the ASR model, our SCaLa involves two sub-tasks:
(1) an ASR sub-task to directly generate character or word se-
quences from acoustic features, and (2) a contrastive sub-task
to predict masked phonemes to improve phoneme discrimina-
tion via contrastive learning. We combine the two sub-tasks to
help the model learn the representations of character or word
sequences and phoneme level information at the same time,
to improve the performance on speech recognition tasks. Our
main contributions are: 1) To the best of our knowledge, this
is the first work extending the self-supervised MCPC approach
to fully-supervised ASR systems; 2) We propose a framework
named SCaLa for end-to-end ASR to enhance phoneme-level
representation learning; 3) We show the effectiveness of our
method, with discussion, on both reading and spontaneous
speech data.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 is the details of the
proposed method. Section 4 shows the experimental results. Fi-
nally, the conclusions and future work are given in Section 5.

2. Related Work
Contrastive learning based on Predictive Coding (PC) has been
widely used in self-supervised ASR training. Contrastive PC
(CPC) [18] and its variants [19] predict future speech seg-

ments based on the past ones for pre-training unidirectional
networks. The CPC-based method was adopted for ASR tasks
in Wav2vec [20] and Vq-wav2vec to learn discrete represen-
tation of speech units [21]. Masked PC (MPC) was proposed
in [22], which can improve the performance of Transformer
based ASR systems by predicting masked encoder features. In
Wav2vec2.0 [15], the authors proposed MCPC, which involved
contrastive learning on top of MPC, with significant gain in per-
formance on downstream ASR tasks. However, as mentioned
in [23], the self-supervised paradigm of Wav2vec2.0 needs to
be carefully designed, and the representation is difficult to in-
terpret. To help the model learn a more meaningful speech rep-
resentation with MCPC, UniSpeech [23] and JUST [24] were
proposed by combining labeled and unlabeled speech for train-
ing in a multitask manner; however, labels were still not ex-
ploited for MCPC performing. To apply contrastive learning for
accented ASR, the authors of [25] adopted SimCLR [26] in the
computer vision domain, and then generated contrastive posi-
tive pairs from the model’s output corresponding to letter-level
tokens using various data augmentation methods. Differently,
our SCaLa uses forced-alignment results to build contrastive
pairs, which ensures these contrastive pairs to be independent
from the model training. Masking strategy based on confidence
has been introduced into self-supervised training [27]. Besides
the supervised setting, our SCaLa concerns more about gener-
ating contrastive pairs by masking phonemic-level encoder fea-
tures to learn phonemic latent representations explicitly.

3. Proposed Method
3.1. Model architecture

The model architecture of SCaLa is shown in Fig. 2, which con-
sists of an ASR sub-task and the proposed contrastive sub-task.

As for the ASR sub-task, the representative Connectionist
Temporal Classification (CTC) framework used in ASR train-
ing [15, 20, 23] is adopted as our backbone model. Our exper-
iments use the typical model network, which is composed of a
successive stack of Convolutional (Conv) layers, Self-Attention
Blocks (SABs), and Fully Connected (FC) layers [28]. Given a



sequence of ds-dimensional acoustic spectrograms x ∈ Rds×T

with length T , the ASR model tries to predict the labeled char-
acter sequence y ∈ LN with length N , where L is the size
of the finite label character. The output of the last Conv layer
is denoted as encoder features z ∈ Rdf×S , where df is the la-
tent feature dimension, and S is the sequence length. Note that
S is less than T after subsampling by the Conv layers [29].
The phoneme-level forced-alignment results are denoted by
a ∈ RS [30]. Merely for brevity, we assume that each item
in a is a phoneme label of items in the encoder features z in-
stead of the input speech. The items in z are masked with some
prescribed probability during training. The masked features are
fed into SABs that yields context features c ∈ Rdf×S .

Regarding the proposed contrastive sub-task, a linear layer
is adopted like in [31, 32] to obtain the contrastive target fea-
tures q ∈ Rdf×S . Then we select masked items from con-
text features as the anchors [15]. Items in target features with
the same indices are taken as the positive samples, while items
in target features with indices from other alignment labels are
taken as negative samples. For the contrastive sub-task, a con-
trastive loss is involved (in our loss function described next)
to guide the model to decrease the similarities between the
anchor-negative pairs, and to increase the similarities between
the anchor-positive pairs.

3.2. Loss functions

We combine the ASR sub-task and the contrastive sub-task to
help the model learn the representation of character sequences
and phoneme-level features simultaneously, and to improve the
performance on speech recognition tasks. The two losses of
SCaLa corresponding to the two sub-tasks are (1) a CTC loss
based on phoneme masking LCTC and (2) a supervised con-
trastive loss with phonemic-granularity supervision LSCL.

3.2.1. CTC loss based on phoneme masking

Phoneme labels and boundaries are used for masking to help
the model enhance phonemic representation [8]. Specifically, a
HMM-DNN acoustic model is trained offline using Kaldi [33]
to get the phoneme-level label of each frame and the corre-
sponding boundaries. An example is shown in Fig. 1(a). During
the training, we randomly sample a set of start indices of en-
coder features with a certain probability pe (We set pe = 6.5%
like in [15]). A total of P phonemes adjacent to the start in-
dices are integrally masked by leveraging the phoneme bound-
aries given forced-alignment. The choice of P is experimentally
studied in Sec. 4.2 (see Fig. 3). For a data-label pair {x,y} and
the forced-alignment result a, the CTC loss based on phoneme
masking is obtained as

LCTC = −log
∑

π∈ϕ(x,y)

p(π|x,a, pe) (1)

where a valid CTC path π is a variant of the transcription y
that allows occurrences of blank tokens and repetitions. The set
ϕ(x,y) includes all valid CTC paths [34].

3.2.2. Contrastive loss with phonemic-granularity supervision

Supervised contrastive learning [17] aims to improve the ro-
bustness of feature representation by discriminating an an-
chor/positive phoneme from a set of negative phonemes. In par-
ticular, to reduce noisy negative pairs, features having the same
phoneme label with the masked phoneme are avoided from the
negative phoneme sets. As shown in Fig. 1(b), the second “q0”

of target features will not be selected as negative phonemes to
be contrasted with the first “q0” of context features. Accord-
ingly, the supervised contrastive loss is defined as

LSCL = − 1

|M |
∑

m∈M

log
esim(cm,qm)/τ∑

n∈Nm
esim(cm,qn)/τ

(2)

where M is the set of all masked indices of encoder features,
and |M | is the number of masked indices; cm and qm are the
mth vectors in context features c and target features q, respec-
tively; sim(α,β) = αTβ/(||α|| ||β||) is the cosine simi-
larity; τ is a temperature scale. The index set Nm consists
of the masked index m and a negative index set K, which
are uniformly sampled from all indices except those having
the same alignment label with the masked phoneme am, i.e.
ak ̸= am, ∀k ∈ K. We set τ = 0.1 and the number of nega-
tive indices |K| = 100 in our experiments – the same as [15].

3.3. Model training

Following [35], an alternate minimization training method is
employed in our proposed method as well. The training losses
LCTC and LSCL are minimized alternately with a balanced ra-
tio, i.e. 1:1, to update the model parameters. The main ad-
vantage of alternating training is that the learning rates of ASR
sub-task optimizer and contrastive sub-task optimizer are sepa-
rated [35]. In our experiments, we find that a single optimizer
resulting from a weighted sum of the two loss functions would
result in a slightly higher CER, and the ratio does not signifi-
cantly influence the performance of our method.

4. Experiments and Discussion
4.1. Experimental setup

Two datasets with different speaking styles are used in our ex-
periments: 1) reading speech data: the open-source Aishell-1
which contains 170 hours of Mandarin speech with 16kHz sam-
pling rate [36]; and 2) spontaneous speech data: an in-house
Mandarin conversational Telephony (JD-Tel) dataset which
contains 1500 hours of speech with 8kHz sampling rate. For
Aishell-1, the original train-test split is used. For the other one,
10% of the samples are randomly selected for testing.

The 80-dimensional Mel-spectrograms are used as the input
to the network. The frame size and step size are 20ms and 10ms,
respectively. Our model contains 3 Conv layers, 10 SABs, and
2 FCs, as shown in Fig. 2. Please refer to [28] for more details
about the model.

Our models are trained on 4 NVIDIA V100 GPUs with
mini-batch size 128. For the alternate loss minimization in
Sec. 3.3, the Learning Rate (LR) for LCTC is 2.5× 10−5, and
5 × 10−4 for LSCL. The LR of LCTC is unchanged, while the
LR of LSCL is decayed to 5× 10−5 ultimately.

Table 1: System performance in CER (%).

Testing data Aishell-1 JD-Tel
Speaking style reading spontaneous
Chain model [37] 7.5 15.9
Wav2vec2.0 [15, 39] 5.3 16.3
WeNet CTC-conformer [38]

w/ CTC prefix beam search 5.9 15.6
w/ attention rescoring 5.3 14.7

CTC (Baseline) [28] 6.7 15.3
CTC+phoneme mask [8] 5.1 14.8
SCaLa 3.9 13.9



(a) (b)

(c) (d)

Figure 3: Ablation study where CERs for SCaLa compared
with: 1) SCaLa using random samplings for the contrastive sub-
task without supervision (SCaLa-SC), and 2) SCaLa without the
contrastive sub-task (SCaLa-C), for a variety of mask settings
on reading and spontaneous speech data. The performance of
the traditional CTC method (Baseline) is included for reference.

4.2. Main experiment and ablation study

As shown in Table 1, we compare SCaLa with state-of-the-art
ASR systems including hybrid (i.e. the chain model, a type of
improved DNN-HMM) [37], end-to-end [8, 28, 38], and self-
supervised learning [15,39]. Experimental results show that ex-
isting end-to-end systems [8, 28, 38] and self-supervised learn-
ing [15, 39] largely outperform the chain model that based on
forced-alignment [37]. The performance of CTC models [28]
can also benefit from phoneme mask strategies [8]. Compared
with the existing methods, our SCaLa achieves the best perfor-
mance. Numerically, it outperforms the traditional CTC mod-
els [28] with 2.8 and 1.4 points CER absolute reductions on
reading and spontaneous speech data, respectively.

As ablation studies on phoneme masking and contrastive
learning: (1) We compare two masking methods: masking F
consecutive frames (fixed-length masks in [15]) and masking
P consecutive phonemes (phoneme masks in SCaLa) where
F ∈ {1, 4, 7, 10} and P ∈ {1, 2, 3}. In the experiments,
the forced-alignment results show that the average phoneme
lengths are 3.3 and 2.6 frames for the reading and spontaneous
speech data, respectively. (2) Different contrastive strategies in-
cluding the proposed SCaLa, SCaLa using random samplings
for the contrastive sub-task without supervision (SCaLa-SC),
and SCaLa without the contrastive sub-task (SCaLa-C) are also
compared. The results for these ablation studies are shown in
Fig. 3. The CERs curves of different methods indicate that
supervised contrastive learning can significantly reduce CERs.
Moreover, the results of different masking strategies on both
sides of the figures show that phoneme masking outperforms
the fixed-length masking in ASR tasks. The results also indicate
that our SCaLa achieved the best performance when P = 2. We
infer that the optimal value of P is related to the fact that a char-
acter in Mandarin usually contains two phonemes [40]. Larger
mask length creates a heavy burden on the model learning be-
cause there is an overly large variety in the masked contents,
while smaller ones influence the training very little [15].

Figure 4: Regularization effect of SCaLa with P = 2 on Aishell-
1 (Each training epoch contains 936 steps in the experiments).

4.3. Analysis of SCaLa

To further evaluate the effectiveness of SCaLa, we analyze the
proposed method from the following three perspectives:
Robustness to phonemic issues. The phonemic issues, such as
similar-phoneme confusion and phoneme-reduction usually in-
troduce substitution and deletion errors [8]. The detailed CER,
including substitution (SUB), deletion (DEL) and insert (INS)
error rates, of SCaLa and the baseline CTC method are shown
in Table 2. The results show that SCaLa achieves significant
reductions on substitution and deletion errors. We also observe
that the performance improvement of SCaLa on reading speech
data is more than that on spontaneous speech data. The rea-
sons may be that recognition tasks on spontaneous speech are
more challenging, and that the given forced-alignment results
may not be accurate enough. Nevertheless, our method can still
improve the performance of speech recognition.

Table 2: Detailed CER (%), including substitution (SUB), dele-
tion (DEL) and insert (INS) error rates, for SCaLa and the base-
line CTC method on reading (Aishell-1) and spontaneous (JD-
Tel) speech data.

Testing data Methods SUB DEL INS CER

Aishell-1
CTC (Baseline) [28] 5.2 1.4 0.1 6.7

SCaLa-SC 3.8 0.4 0.1 4.3
SCaLa 3.5 0.3 0.1 3.9

JD-Tel
CTC (Baseline) [28] 10.2 4.7 0.4 15.3

SCaLa-SC 9.9 4.2 0.3 14.4
SCaLa 9.7 3.9 0.3 13.9

Noisy negative reduction. We use the forced-alignment results
to count the proportion of noisy negative pairs among all the
negative pairs for contrasting. We find that the noisy negative
rates of self-supervised MCPC are 10.21% and 14.60% for the
two datasets, respectively. The number is non-negligible [17].
As shown in Table 2, SCaLa improves system performance
compared to SCaLa-SC by reducing the noisy negatives.
Regularization effect. Fig. 4 shows the CTC losses of SCaLa,
SCaLa-SC, SCaLa-C and the baseline CTC method on the
validation data of Aishell-1. SCaLa obtains the lowest and
smoothest loss curve compared with the other three methods,
which indicates the regularization effect to the training.

5. Conclusion
In this paper, a novel framework named SCaLa has been pro-
posed for ASR training. It extends the self-supervised MCPC
approach to a fully-supervised setting. The labels are effectively
leveraged to enhance ASR models to learn phoneme represen-
tation. SCaLa significantly improved the performance on both
reading and spontaneous Mandarin speech data compared to the
baseline methods. In the future work, the performance on more
other masking strategies and languages will be evaluated.
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