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ABSTRACT
Multimodal named entity recognition (MNER) is a vision-language
task where the system is required to detect entity spans and corre-
sponding entity types given a sentence-image pair. Existing meth-
ods capture text-image relations with various attentionmechanisms
that only obtain implicit alignments between entity types and im-
age regions. To locate regions more accurately and better model
cross-/within-modal relations, we propose a machine reading com-
prehension based framework for MNER, namely MRC-MNER. By
utilizing queries in MRC, our framework can provide prior infor-
mation about entity types and image regions. Specifically, we de-
sign two stages, Query-Guided Visual Grounding and Multi-Level
Modal Interaction, to align fine-grained type-region information
and simulate text-image/inner-text interactions respectively. For
the former, we train a visual grounding model via transfer learning
to extract region candidates that can be further integrated into the
second stage to enhance token representations. For the latter, we
design text-image and inner-text interaction modules along with
three sub-tasks for MRC-MNER. To verify the effectiveness of our
model, we conduct extensive experiments on two public MNER
datasets, Twitter2015 and Twitter2017. Experimental results show
that MRC-MNER outperforms the current state-of-the-art models
on Twitter2017, and yields competitive results on Twitter2015.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies→ Natural language pro-
cessing.
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3548427

KEYWORDS
multimodal named entity recognition, machine reading compre-
hension, visual grounding, transfer learning

ACM Reference Format:
Meihuizi Jia, Xin Shen, Lei Shen, Jinhui Pang*, Lejian Liao, Yang Song, Meng
Chen, and Xiaodong He. 2022. Query Prior Matters: A MRC Framework
for Multimodal Named Entity Recognition. In Proceedings of the 30th ACM
International Conference on Multimedia (MM ’22), October 10–14, 2022, Lis-
boa, Portugal. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3503161.3548427

1 INTRODUCTION
Nowadays, multimodal named entity recognition (MNER) has at-
tracted extensive attention of researchers as it extends the tradi-
tional text-based NER and alleviates ambiguity in natural language
with the help of auxiliary images. Given a sentence-image pair,

Figure 1: An example for multimodal named entity recogni-
tion with (a) the whole image cue, (b) region cues from VG
toolkit, (c) region cues paired with queries for entity types.

MNER is required to recognize named entities of different types
(mainly persons, locations, and organizations labeled as PER, LOC,
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and ORG respectively) in the sentence with extra image assistance.
As shown in Figure 1 (a), two people in the front and train platform
in the back of the image provide useful information to recognize
named entities “David Bowie” (PER), “Iggy Pop” (PER), and “Copen-
hagen Railway Station” (LOC).

Existing MNER datasets usually contain few fine-grained anno-
tations in each sentence-image pair, i.e., the relevant image is given
as a whole without manually-labeled region signals for a particular
entity type. Therefore, previous works implicitly align contents
inside a sentence-image pair and fuse their representations based
on various attention mechanisms [1, 4, 17, 20, 33, 38, 41]. However,
it is hard to interpret and evaluate the effectiveness of implicit align-
ments of entity types and their image regions. Recently, researchers
[40] exploit a visual grounding toolkit [35] to ground a phrase or
sentence on its image region. The grounded regions of different
entity types are then bound with the entire sentence and fed into
the recognition model together (as shown in Figure 1 (b)). That is,
the explicit relations of each type-region pair are still not utilized.
In addition, the data in tasks like MNER and visual grounding is
biased, which leads to inaccurate results of region detection.

Existing works formalize MNER as a sequence labeling task that
integrates image embeddings into a sequence labeling model and as-
signs type labels to named entities. Recently, the MRC framework is
employed in many natural language tasks due to its solid language
understanding capability [5, 13, 14]. Similarly, to take advantage of
the prior knowledge encoded in MRC queries, e.g., priors of entity
types [13], we regard MNER as a machine reading comprehension
(MRC) task. MRC queries are expected to (1) ground a specific entity
type to its relevant region(s), which achieves explicit alignments
of entity types and image regions (as shown in Figure 1 (c)); (2)
provide guidance to model text-image and inner-text interactions
on cross-modal and within-modal levels. Then named entities and
their entity types are converted into answer spans and pre-defined
queries accordingly. For example, recognizing entities with type
LOC in sentence “David Bowie and Iggy Pop Copenhagen Rail-
way Station 1976” is formalized as extracting answer spans to the
query “Location: Country, city...” from the given sentence. Details
of transforming different entity types to queries will be described
in Section 3.

To tackle the above-mentioned issues and make full use of infor-
mative query priors, we propose aMachineReadingComprehension
based framework forMulti-modalNamedEntityRecognition (MRC
-MNER), which consists of two stages, Query-Guided Visual Ground-
ing and Multi-Level Modal Interaction. First, we train a visual
grounding model via transfer learning on our newly constructed
corpus to achieveMNER adaptation. The model returns the top-𝑘 re-
gion candidates with their confidence scores for the input query.We
then use Multi-Level Modal Interaction to model cross-modal and
within-modal relations with three groups of sub-tasks. Specifically,
we design two new sub-tasks, namely region weights estimation
and existence detection, to facilitate entity span prediction. The
former aims to import region candidates dynamically, and the latter
provides a global judgement about whether named entities of the
given types exist in the input sentence. Finally, the Multi-Level
Modal Interaction model is trained to recognize entities with a joint
loss under the multi-task scheme.

In summary, the main contributions of this paper are three-fold:

• We propose a novel MRC-based framework for multimodal
named entity recognition (MRC-MNER), which unifies vi-
sual grounding and MRC by designing queries with prior
information of entity types.

• We train a query-guided visual grounding model via transfer
learning to extract region candidates, thus achieving fine-
grained alignments of regions and entity types. At the same
time, we design a Multi-Level Modal Interaction model that
conducts region weights estimation, existence detection, and
entity span prediction simultaneously.

• We conduct extensive experiments on two public MNER
datasets, Twitter2015 [41] and Twitter2017 [17], to evaluate
the performance of our MRC-MNER framework. Experimen-
tal results show that MRC-MNER outperforms the current
state-of-the-art models on Twitter2017 and yields competi-
tive results on Twitter2015.

2 RELATEDWORK
2.1 Multimodal Named Entity Recognition
As a crucial component of natural language processing, named
entity recognition (NER) aims to discover named entities in free
text and classify them into predefined types [11, 12, 18, 34]. With
multimodal data emerging in the various task, images as auxil-
iary information assist the NER model in better identifying the
entities contained in the text. The critical challenge of MNER is
aligning and fusing text and image information. [17] proposed a
gated mechanism for MNER to model the cross-modal interactions.
[38] proposed a multimodal transformer architecture to acquire
expressive text-image representation by incorporating the auxil-
iary entity span detection. [4] integrated both image attributes and
image knowledge to improve model performance for MNER. [40]
employed a visual grounding toolkit to extract the top-1 image
region and proposed a graph fusion approach based on a graph
model to obtain text-image representation. [33] proposed a match-
ing and alignment framework for MNER to alleviate the impact of
mismatched text-image pairs on encoding. The above methods treat
the MNER task as a sequence labeling problem. Due to a lack of
prior information of entity types in sequence labeling, image infor-
mation (whole images, equally regions of images, or the retrieved
visual regions) with the entire sentence is fed into the entity recog-
nition model together, which cannot realize the explicit alignment
of image and text.

2.2 Machine Reading Comprehension
Machine Reading Comprehension (MRC) requires answering spe-
cific queries by searching for relevant information in natural lan-
guage contexts. The task of text span extraction can be executed to
two multi-class classification or two binary classification tasks. For
the former, the model needs to predict the start and end positions
of the answer. For the latter, the model needs to decide whether
each token is the start/end position. In previous work, Recurrent
Neural Network (RNN) was adopted to encode query and context,
multiple RNN and linear projection were stacked to predict an-
swer span in stages [3, 21, 36]. The performance was boosted after
the large-scale pre-training model was released [25, 31], such as
ELMo [22], BERT [6], RoBERTa [16]. Recently, there is a tendency
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Figure 2: Overview of our MRC-MNER framework. The details of Multi-Level Modal Interaction are illustrated on the right.

to employ MRC on variety of NLP tasks, including named entity
recognition [13], entity relation extraction [14], sentiment analysis
[5] and summarization [19]. Our work is inspired by [13], which
formalized the task of NER as a single-turn question answering task.
Different from this work, we design queries with prior information
of entity types to bridge visual grounding and MRC.

2.3 Visual Grounding
Visual grounding is a vision-language task, which aims to ground a
natural language phrase or sentence about an image onto a correct
region of the image [35]. That is, the system takes an image and
text as input, and outputs the corresponding bounding box (region).
Frameworks of visual grounding are either two-stage or one-stage.
In the two-stage methods, the first stage is used to propose region
candidates through some region proposal methods (e.g., Edgebox
[42], selective search [32], and Region Proposal Networks [28]), and
then the second stage is designed to rank those candidates based on
their similarities with the input text. The one-stage methods utilize
one-stage models (e.g., YOLO [26]) combined with extra features
to directly output the final region(s). [35] built a one-stage model
based on the YOLOv3 object detector [27] by integrating additional
spatial features. The model is 10 times faster than state-of-the-art
two-stage methods and achieves superior grounding accuracy.

In our work, queries are tokens or phrases related to entity types,
and contain few complex spatial and logical information. To better
fit the MNER task, we construct a corpus and conduct a domain
and task adaptation based on transfer learning to finetune the pre-
trained model released by [35].

3 METHOD
3.1 Task Formalization
Given a sentence 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} and its associated image 𝑉
as input, where 𝑛 denotes the length of the sentence, the goal of
MNER is to find a set of entities from 𝑋 with the assistance of
images and classify each entity into one of the pre-defined types.
Previous works on MNER usually formulate the task as a sequence
labeling problem. Let 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑛) denotes a label sequence

Table 1: Examples for transforming entity types to queries.

Entity Type Natural Language Query
PER (Person) Person: People’s name and fictional character.

LOC (Location) Location: Country, city, town continent by geo-
graphical location.

ORG (Organization)
Organization: Include company, government
party, school government, and news organiza-
tion.

corresponding to 𝑋 , where 𝑦𝑖 ∈ Y and Y is the pre-defined label set
with the BIO tagging schema [30]. Inspired by [13], in this work, we
propose to apply the MRC framework to the MNER task, which can
take advantage of the query prior information and solid language
understanding capability of MRC.

Data Preparation. First, we need to transform the MNER data
to the form of MRC, i.e., a set of (QUESTION, ANSWER, CONTEXT,
IMAGE) quadruples. Each label of the entity type 𝑦𝑡 ∈ 𝑌𝑡 is con-
nected with a natural language query 𝑞𝑦 = {𝑞1, 𝑞2, ..., 𝑞𝑚} which
we construct, where𝑚 denotes the length of the query. The entity
𝑥start,end is a substring in sentence𝑋 = {𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑠𝑡𝑎𝑟𝑡+1, ..., 𝑥𝑒𝑛𝑑−1,
𝑥𝑒𝑛𝑑 }, which satisfies start ≤ end. At last, we obtain the quadruples(
𝑞𝑦, 𝑥start,end, 𝑋,𝑉

)
which corresponds to (QUESTION, ANSWER,

CONTEXT, IMAGE).
QueryConstruction.Query plays a significant role in ourMRC-

MNER since it provides prior information about labels and image
regions, so it should be described as generic, precise, and effective
as possible. Inspired by [13], we design several different forms of
queries. Different from this work, the queries in our model need
to unify the two tasks of MRC and VG effectively. The amount
of information in the query should be weighted. Less amount of
information in query will limit the powerful understanding ability
of MRC, while an excess of information will increase the difficulty
of VG. Therefore, we design the appropriate query for each entity.
Examples are shown in Table 1. In section 4.4, we specially construct
relevant experiments for different query construction methods.
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Figure 3: Illustration of Corpus Construction. (a) Replacing
original phrases in the Flickr30K Entities dataset with MRC
queries. (b) Labelling existing regions related to PER, LOC,
and ORG in the Twitter2015/2017-Train dataset.

3.2 Query-Guided Visual Grounding
Visual grounding aims to detect the relevant visual regions given
the input query. In this section, we revise a small amount of data
on visual grounding using queries that we construct in Section
3.1 and train a well-matched visual grounding model via transfer
learning to extract region candidates. As shown in the black dotted
box in the left part of Figure 2, top-𝑘 image region candidates are
retrieved with the assistance of the query “Person: People’s name
and fictional character...”.

We apply the pre-trained fast and accurate one-stage visual
grounding model [35] (denoted as FA-VG) as our based model. In
the setting of Phrase Localization task, FA-VG was trained and
evaluated on the Flickr30K Entities dataset [23] that augments the
original Flickr30K [37] with region-phrase correspondence annota-
tions. However, there are two obstacles: (1) These phrases/queries
are from image captions, and not particularly designed for the
named entity recognition task. (2) The widely-used MNER datasets
(i.e. Twitter2015 [41] and Twitter2017 [17]) have different data
domains compared with the Flickr30K Entities dataset. Thus, we
utilize transfer learning to overcome above issues.

Corpus Construction. To fulfill MNER adaptation of the pre-
trained FA-VG model, we construct a corpus consisting of three
sets of samples:

(1) Samples from the Flickr30K Entities dataset with phrases
highly-related to pre-defined PER, LOC, ORG, and OTHER
queries.

(2) Samples from (1) with phrases replaced by MNER queries.
(3) Samples from the Twitter2015/2017 dataset with manually-

labeled regions of PER, LOC, and ORG types.

Since only a small part of phrases in the Flickr30K Entities dataset
are related to MNER entity types, we first filter the original data to
get those highly-relevant samples, and replace phrases in themwith
MNER queries. Specifically, all phrases in the Flickr30K Entities
dataset and four MRC queries in Table 1 are represented by BERT
embeddings [6] respectively. Then we calculate cosine similarities
between embeddings of phrases and each query, and only keep sam-
ples with scores larger than a threshold, e.g., 0.7. To obtain samples
in the second set, we make a copy of the first set and conduct query
replacement. As shown in Figure 3(a), the original query “country
area” is replaced by “Location: Country, city...” that is defined as
the MRC query for LOC in Table 1. To take advantage of some in-
domain data, we randomly sample 1000+ images from the training
set of Twitter2015/2017 dataset, and manually annotate regions
related to PER, LOC, and ORG. Take Figure 3(b) as an example. The
image is labeled with two pairs of regions and queries: red box with
“Person: People’s name...” and blue box with “Location: Country,
city...”. The statistics of the constructed corpus are summarized in
Appendix A We split the corpus into training/validation/test set
with the ratio of 9:0.5:0.5. During training, all sets of samples are
shuffled so that the model can be finetuned to not only maintain
the ability of accurate visual grounding, but also adapt to new task
and domain.

Training Procedure. FA-VG uses Darknet-53 [27] with feature
pyramid networks [15] to extract visual features for the input image.
For the text query, FA-VG embeds it to a 768D real-valued vector
using the uncased version of BERT [6]. Then it makes predictions
based on the fused representations of image, text, and spatial1
features. After being finetuned on the constructed corpus, FA-VG
achieves a grounding accuracy (IoU>0.5) of 79.96% on the test
set2, which significantly outperforms the pre-trained FA-VG model
withoutMNER adaptation (64.72%). The results show that our query-
guided visual grounding module can reach a better localization of
regions related to entity types. Finally, FA-VG returns top-𝑘 region
candidates with their confidence scores Y𝑖𝑚𝑎𝑔𝑒 from the softmax
function of the output layer. Both regions and confidence scores
are further utilized in the Multi-Level Modal Interaction model.

3.3 Multi-Level Modal Interaction
In this section, we introduce the details of our proposed framework
MRC-MNER. Figure 2 illustrates the overall architecture of our
model. The input of MRC-MNER contains two modalities, including
the text-modality (query and sentence), and image-modality (the
detected top-𝑘 visual regions from VG in Section 3.2). Without loss
of generality, we leverage the popular pretrained language model
BERT [6] and ResNet [8] to encode the text and images. Then
we devise two novel multi-level interaction modules (text-image
interaction and inner-text interaction) to fuse the information from
two modalities seamlessly, and enhance the representation for each
token in the sentence. To facilitate the final entity span detection
task, we further leverage the multi-task training scheme including
two auxiliary sub-tasks of region weights estimation and existence
detection. We will explain each module in the following sections.
1The spatial feature captures the coordinates of the top-left corner, center, and bottom-
right corner of the grid at (𝑖 , 𝑗 ).
2IOU (Intersection over Union) is a term used to describe the extent of overlap of two
boxes.
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3.3.1 Text and Image Representations. Here, we encode text and im-
ages to obtain the text representation and visual representation, re-
spectively. For text representation, we employ the pre-trained BERT
model [6] as encoder, and generate an input to feed through BERT
by concatenating { [CLS], 𝑞1, 𝑞2, ..., 𝑞𝑚, [𝑆𝐸𝑃], 𝑥1, 𝑥2, ..., 𝑥𝑛, [SEP]}
where [CLS] and [SEP] are special tokens. Then BERT outputs a
context representation matrix H ∈ R𝑡×𝑑𝑡 after receiving the com-
bined string, where𝑑𝑡 = 768 is the vector dimension of the last layer
of BERT and 𝑡 = 𝑛 +𝑚 + 3 is the length of the input to BERT. For vi-
sual representation, we use ResNet [8] as the image encoder, which
achieves state-of-the-art on various visual tasks[7, 39]. Specifically,
we first resize the image to 224 × 224 pixels, and obtain its visual
representations from a pre-trained 152-layer ResNet. The extracted
visual features are represented as U𝑖 = 𝑅𝑒𝑠𝑁𝑒𝑡−152 (𝑉 ), where
U𝑖 ∈ R𝑑𝑣 , and 𝑑𝑣 = 2048 is the dimension of visual representation.
After receiving the text and image representations, we use a linear
projection to map them to the same dimension 𝑑 = 512.

3.3.2 Text-Image Interaction. As shown in Figure 2, first of all, we
use the region candidates and the entire sentence to measure the
overall matching degree. Themodel receives the𝑘 region candidates
representation U from ResNet and the “[CLS]” representation H0
from BERT as input and outputs the relevance between them.

Z𝑖𝑚𝑔 = tanh
(
W𝑔 [H0;U]⊤

)
, 𝛼𝑖𝑚𝑔 = softmax

(
Z𝑖𝑚𝑔

)
(1)

where W𝑔 ∈ R𝑑 , H0 ∈ R𝑑 , and U ∈ R𝑘×𝑑 . We use [; ] to denote
the concatenation of the representations of whole sentence and
candidate regions. The concatenation between a matrix and a vector
is performed by concatenating each column of the matrix with the
vector. And then, we carry out the fine-grained fusion between
top-𝑘 region candidates and sentence, and obtain the cross-modal
representation for each token.

We get the sentence representation H from the BERT, and follow
[33, 38] and use a naive gate mechanism to control the combination
of text and top-𝑘 region candidates at the token-level.

𝑔 = sigmod
(
W𝑓 [H;U]

)
, 𝑔 = 𝑔 ∗ 𝛼𝑖𝑚𝑔 (2)

whereW𝑓 ∈ R𝑑×2𝑑 . We update the above gate score𝑔 using the top-
𝑘 region weights score 𝛼𝑖𝑚𝑔 , which aims to weigh the correlation
between top-𝑘 region candidates and the whole sentence.

Finally, we update region representation U as follows and obtain
the updated sentence representation H𝑢 that incorporates image
information:

Ũ = 𝑔 ⊙ U, H𝑢 =

(
W𝑢

[
H; Ũ

] )
(3)

where ⊙ is the element-wise product,W𝑢 ∈ R𝑑×2𝑑 and H𝑢 ∈ R𝑡×𝑑 .

3.3.3 Inner-Text Interaction. We specially design a global signal to
determine whether the sentence contains the entity asked by the
current query. This signal interacts with sentence representation
and can mutually reinforce each other. We assume that if the sen-
tence contains entities, and the model should be more inclined to
tag the entity span; on the contrary, if the model extracts the entity
span from the sentence, then the global signal tends to determine
the sentence contains entities. We follow [12, 24] and apply a label
attention network to update sentence representation with start

label and end label information as well as global signal representa-
tion. Finally we get label-enhanced contextual information H𝑠 , H𝑒

and label-enhanced global signal representation Ĥ0. We map the
matrices of H𝑠 ,H𝑒 , Ĥ0 to queries (Q𝑠 ,Q𝑒 ,Q0), keys (K𝑠 ,K𝑒 ,K0),
and values (V𝑠 ,V𝑒 ,V0) by using different linear projections. And
then, we use the co-attention mechanism to calculate the attention
scores, respectively, between the label-enhanced start position in-
formation H𝑠 and global signal Ĥ0, and between H𝑒 and Ĥ0. Finally,
we acquire the updated entity span representation and the global
signal representation.

C𝑠 = softmax

(
Q𝑠K⊤

0√︁
𝑑𝑘

)
V0, H̃𝑠 = LN (H𝑠 + C𝑠 ) (4)

where LN denotes the layer normalization function [2], Q𝑠 ∈ R𝑡×𝑑 ,
K0,V0 ∈ R1×𝑑 , and H̃𝑠 ∈ R𝑡×𝑑 . The above formula represents the
updated entity span start representation. Similarly, we can obtain
the updated entity span end representation H̃𝑒 ∈ R𝑡×𝑑 , and the
updated global signal representation H̃0 ∈ R1×𝑑 , which only needs
to replace the corresponding Q, K, V, respectively.

3.3.4 Multi-Task Training. In this section, we design three sub-
tasks to facilitate the MNER problem.

Region Weights Estimation. Previous work [40] only extracts
top-1 visual region for each entity type, which relies heavily on the
accuracy of VGmodel. Differently, we have two improvements. First,
we leverage the VG model to detect the top-𝑘 visual regions with
their confidence scores. Second, we encourage themodel to estimate
the weights of different visual regions during entity recognition,
which can utilize the image information dynamically. Thus, we
devise an auxiliary task named region weights estimation (RWE).
Specifically, we obtain the confidence scores 𝛼𝑖𝑚𝑔 from Section 3.3.2
and use them as the supervised probability distribution P𝑖𝑚𝑎𝑔𝑒 for
the detected visual regions. To train this sub-task, we minimize the
Mean Square Error between the probability distribution P𝑖𝑚𝑎𝑔𝑒 and
the confidence scores Y𝑖𝑚𝑎𝑔𝑒 of top-𝑘 region candidates as follows.

L𝑖𝑚𝑎𝑔𝑒 = MSE
(
P𝑖𝑚𝑎𝑔𝑒 , Y𝑖𝑚𝑎𝑔𝑒

)
(5)

Existence Detection. Considering not every utterance contains
the specific entity in the dataset, it’s necessary to design an aux-
iliary task to predict whether there exists the specific entity type
in the utterance, which can be an effective indicator for the final
entity recognition task intuitively. Specifically, the global signal
representation H̃0 from Section 3.3.3 is utilized for the existence
detection (ED) task. The ED task and the entity span prediction
task can share the corresponding mutual information with the co-
interactive attention mechanism. Here, we detect of the existence
of entity as follows:

P𝑒𝑥𝑖𝑠𝑡 = softmax
(
Ĥ0W𝑒𝑥𝑖𝑠𝑡

)
(6)

where W𝑒𝑥𝑖𝑠𝑡 ∈ R𝑑×2 and P𝑒𝑥𝑖𝑠𝑡 ∈ R1×2. The cross-entropy loss is
taken as the training objective:

L𝑒𝑥𝑖𝑠𝑡 = CE (P𝑒𝑥𝑖𝑠𝑡 , Y𝑒𝑥𝑖𝑠𝑡 ) (7)

where Y𝑒𝑥𝑖𝑠𝑡 is the golden label for whether the sentence contains
entities asked by a query.

Entity Span Prediction. To tag the entity span from a sentence,
it is necessary to find the start and end positions of the entity.
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Table 2: Performance comparison on two MNER datasets. We refer to the results of UMGF from [40] and other results from [33].

Methods
Twitter2015 Twitter2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG OTH. Pre. Rec. F1 PER LOC ORG OTH. Pre. Rec. F1

BiLSTM-CRF 76.77 72.56 41.33 26.80 68.14 61.09 64.42 85.12 72.68 72.50 52.56 79.42 73.43 76.31
CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37
HBiLSTM-CRF 82.34 76.83 51.59 32.52 70.32 68.05 69.17 87.91 78.57 76.67 59.32 82.69 78.16 80.37

BERT 84.72 79.91 58.26 38.81 68.30 74.61 71.32 90.88 84.00 79.25 61.63 82.19 83.72 82.95
BERT-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44
T-NER 83.64 76.18 59.26 34.56 69.54 68.65 69.09 - - - - - - -

MRC-MNER-Text (Ours) 84.72 81.13 60.07 39.23 76.35 69.46 72.74 91.33 85.23 81.75 68.41 87.12 84.03 85.55
GVATT-HBiLSTM-CRF 82.66 77.21 55.06 35.25 73.96 67.90 70.80 89.34 78.53 79.12 62.21 83.41 80.38 81.87

AdaCAN-CNN-BiLSTM-CRF 81.98 78.95 53.07 34.02 72.75 68.74 70.69 89.63 77.46 79.24 62.77 84.16 80.24 82.15
GVATT-BERT-CRF 84.43 80.87 59.02 38.14 69.15 74.46 71.70 90.94 83.52 81.91 62.75 83.64 84.38 84.01
AdaCAN-BERT-CRF 85.28 80.64 59.39 38.88 69.87 74.59 72.15 90.20 82.97 82.67 64.83 85.13 83.20 84.10

MT-BERT-CRF 85.30 81.21 61.10 37.97 70.84 74.80 72.58 91.47 82.05 81.84 65.80 84.60 84.16 84.42
UMT-BERT-CRF 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31

ATTR-MMKG-MNER 84.28 79.43 58.97 41.47 74.78 71.82 73.27 - - - - - - -
UMGF 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51
MAF 84.67 81.18 63.35 41.82 71.86 75.10 73.42 91.51 85.80 85.10 68.79 86.13 86.38 86.25

MRC-MNER-VG (Ours) 84.88 81.43 61.06 39.93 78.08 70.75 74.22 91.83 85.84 83.09 72.11 88.59 84.16 86.32
MRC-MNER (Ours) 85.71 81.97 61.12 40.20 78.10 71.45 74.63 92.64 86.47 83.16 72.66 88.78 85.00 86.85

Two binary classifiers are exploited respectively. One is to predict
whether each token is the start index or not, and the other is to
predict whether each token is the end index or not. Hence, given
the label-enhanced entity span start and end representations, the
model then predicts the probability of each token being a start
position as follows:

P𝑠𝑡𝑎𝑟𝑡 = softmaxeach row
(
H̃𝑠W𝑠

)
(8)

where W𝑠 ∈ R𝑑×2 and P𝑠𝑡𝑎𝑟𝑡 ∈ R𝑡×2. Similarly, we can predict the
probability distribution of the end position index P𝑒𝑛𝑑 ∈ R𝑑×2.

During training, Y𝑠𝑡𝑎𝑟𝑡 and Y𝑒𝑛𝑑 are two label sequences of
length 𝑡 , representing the ground-truth label of each token in sen-
tence 𝑋 , which is the start or end position of any entity. The cross-
entropy loss is used for this task:

L𝑠𝑡𝑎𝑟𝑡 = CE (P𝑠𝑡𝑎𝑟𝑡 , Y𝑠𝑡𝑎𝑟𝑡 ) , L𝑒𝑛𝑑 = CE (P𝑒𝑛𝑑 , Y𝑒𝑛𝑑 ) (9)

As there could exist multiple entities from the same query in the
sentence, we follow [13] and append a binary classification model
to predict the matching probability of start and end positions.

P𝑚𝑎𝑡𝑐ℎ = sigmoid
(
W𝑚

[
H̃𝑠 ; H̃𝑒

] )
(10)

where W𝑚 ∈ R1×2𝑑 . And the cross-entropy loss is used to train
this task:

L𝑚𝑎𝑡𝑐ℎ = CE (P𝑚𝑎𝑡𝑐ℎ, Y𝑚𝑎𝑡𝑐ℎ) (11)
where Y𝑚𝑎𝑡𝑐ℎ denotes the ground-truth label for whether each start
index should be matched with each end index.

Joint Training. There are three sub tasks in our proposed MRC-
MNER model: Region Weights Estimation, Entity Span Prediction
and Existence Detection. Hence, the whole model can be jointly
trained, and the final loss function is defined as follows:

L = 𝜆1L𝑠𝑡𝑎𝑟𝑡 + 𝜆2L𝑒𝑛𝑑 + 𝜆3L𝑚𝑎𝑡𝑐ℎ + 𝜆4L𝑒𝑥𝑖𝑠𝑡 + 𝜆5L𝑖𝑚𝑎𝑔𝑒 (12)

where 𝜆1-𝜆5 are hyper-parameters to control the contributions of
each sub-tasks.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. We evaluate our framework on two widely-used MNER
datasets, Twitter2015 [41] and Twitter2017 [17]. Both datasets con-
tain four entity types: Person (PER), Organization (ORG), Location
(LOC) and Others (OTHER) for sentence-image pairs. The datasets
are separated into training, validation, and test sets with the same
type distribution and the statistics are listed in Appendix A.
Evaluation Metrics. Following the previous work [4, 33, 38, 40],
we exploit precision (𝑃𝑟𝑒.), recall (𝑅𝑒𝑐.), and F1 score (𝐹1) to evalu-
ate the performance of named entity recognition for overall entity
types, and use F1 score (𝐹1) only for each type.
Implementation Details.We first employ the pre-trained uncased
BERT𝑏𝑎𝑠𝑒 model [6] with dimension of 768 and the pre-trained
ResNet152 with dimension of 2048 to get the initial representations
of text tokens and images, respectively. Then these representations
are transformed to 512D with a linear projection. The learning rate
and dropout rate are set to 5e-5 and 0.3, which obtains the best per-
formance on the validation set of two MNER datasets after conduct-
ing a grid search over the interval [1e-5, 1e-4] and [0.1, 0.6]. For the
joint training loss, we set the hyper-parameters 𝜆1=𝜆2=𝜆3=𝜆5=0.17
and 𝜆4=0.33 by tuning on the validation set. The entire model is
trained on one Tesla P40 GPUs with pytorch 1.7.
Baseline Models.We compare two groups of baselines with our
approach. The first group consists of some text-based NER mod-
els that formalize NER as a sequence labeling task: (1) BiLSTM-
CRF[9], CNN-BiLSTM-CRF [18], HBiLSTM-CRF [10], which
are the NER model with a bidirectional LSTM layer and a CRF layer,
and the difference is they use different encoding methods to acquire
character-level embedding and fuse with word-level embedding. (2)
BERT [6], BERT-CRF, which use powerful encoder BERT com-
pared with aforementioned methods. (3) T-NER [29, 41], which
is a NER model designed specifically for tweet. It exploits broadly
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used features, including the dictionary, contextual and orthographic
features. Besides, we compare several competitive multimodal NER
models: (1) GVATT-HBiLSTM-CRF [17], GVATT-BERT-CRF
[38], which use different encoder to obtain the text representa-
tion, but all propose a visual attention mechanism to combine
images with text and acquire text-aware image representation. (2)
AdaCAN-CNN-BiLSTM-CRF [41], AdaCAN-BERT-CRF [38],
which exploit different ways to encode the text, but all design an
adaptive co-attention mechanism to integrate image and text. (3)
UMT-BERT-CRF [38], MT-BERT-CRF [38], which propose a
multimodal interaction module to acquire expressive text-visual
representation, but the difference is whether the auxiliary entity
span detection is incorporated into multimodal Transformer. (4)
ATTR-MMKG-MNER [4], which integrates both image attributes
and image knowledge into MNER model. (5) UMGF [40], which
proposes graph fusion approach based on graph model to obtain
text-visual representation. (6) MAF [33], which proposes a match-
ing and alignment framework for MNER to alleviate the impact
of mismatched text-image pairs on encoding. In addition, we also
compare MRC-MNER with its two variants: MRC-MNER-Text and
MRC-MNER-VG. The former uses text input only, while the latter
is equipped with the vanilla VG without transfer learning.

4.2 Main Results
Table 2 shows the experimental results of MRC-MNER and our
baselines. The upper results are from text-based models, and we
notice that BERT -based models outperform LSTM-based models
with a significant margin on both datasets, indicating that the ad-
vantage of pre-trained language models on this task. And then, we
find that our MRC-MNER-Text (removing image information from
MRC-MNER) achieves better performance than sequence labeling
models, which verifies the value of prior knowledge in MRC queries
and the powerful understanding ability of MRC.

Second, we compare the MNER models with their corresponding
uni-modal baselines, such as GVATT-HBiLSTM-CRF vs. HBiLSTM-
CRF, AdaCAN-CNN-BiLSTM-CRF vs. CNN-BiLSTM-CRF, andMRC-
MNER vs. MRC-MNER-Text. We find that almost all multimodal
models can significantly outperform their corresponding uni-modal
competitors, indicating that the image information is helpful for
the MNER task.

Finally, we compare MRC-MNER with other MNER models. It
is clear to observe that MRC-MNER achieves state-of-the-art per-
formance on Twitter2017 dataset and competitive results on Twit-
ter2015. Particularly, MRC-MNER yields a 0.6 improvement com-
pared with the current best model MAF in terms of overall 𝐹1 on
Twitter2017. At the same time, we present a variant of our model,
MRC-MNER-VG, which replaces our query-guided VG model with
a VG toolkit. The performance of MRC-MNER-VG drops on all
metrics, but its results are still competitive with other models. The
above results validate the effectiveness of our framework with
query-guided VG and multi-level modal interaction.

4.3 Ablation Study
To show the effectiveness of each sub-task in MRC-MNER, we
conduct ablation study by removing particular sub-task from it. As

Table 3: Ablation study of MRC-MNER.

Methods Twitter2015 Twitter2017
Pre. Rec. F1 Pre. Rec. F1

MRC-MNER 78.10 71.45 74.63 88.78 85.00 86.85
w/o RWE 77.24 70.86 73.91 88.11 84.26 86.14
w/o ED 77.63 70.95 74.14 88.29 84.36 86.29

w/o RWE+ED 76.82 70.24 73.38 87.72 83.99 85.81

Table 4: Results with different query transformations.

Query transformation Twitter2015 Twitter2017 Flickr30K
F1 F1 Accuracy

Keyword 74.03 86.11 73.37
Rule-based template filling 74.01 86.15 70.84

Keyword’s Wikipedia 73.94 86.07 69.68
Keyword + Annotation 74.63 86.85 79.96

shown in Table 3, we can see that all sub-tasks in our MRC-MNER
contribute significantly to the final results.

The discussion on the effectiveness of each sub-task is given
with respect to two datasets. First, after removing the RWE (Region
Weights Estimation) sub-task, the performance significantly drops
on all metrics. In particular, 𝐹1 scores on these two datasets degrade
by 0.72 and 0.71, respectively. This shows that the existence of RWE
promotes effective interaction between image and text. Besides,
removing the ED (Existence Detection) sub-task also damages the
performance on all metrics. 𝐹1 scores on the two datasets decrease
by 0.49 and 0.56, respectively. This is because ED provides global
information for the entire model, which can help the model de-
termine whether the sentence contains certain entities asked by
the query. Finally, after removing both RWE and ED, the perfor-
mance of the model drops more significantly, indicating that both
RWE and ED sub-tasks are essential in our framework. Overall,
different sub-tasks of our model can work effectively with each
other under multi-task training and enable the model to yield better
performance for the MNER task.

4.4 Discussions
Effect of Query Transformations. To better validate the effect of
MRC queries, we explore different ways to transform entity types
to queries by utilizing the following expressions: (1) Keyword: An
entity type keyword. The query for type LOC is “Location”. (2)
Rule-based Template Filling: Phrases generated by a simple tem-
plate. The query for type LOC is “Please find location”. (3) Key-
word’s Wikipedia: The definition of the entity type keyword from
Wikipedia. The query for type LOC is “Location is used to denote
a region (point, line, or area) on Earth’s surface or elsewhere”. (4)
Keyword+Annotation: The concatenation of a keyword and its anno-
tations. The query for type LOC is “Location: Country, city, town,
continent by geographical location”. Table 4 shows the experimen-
tal results on Twitter2015 and Twitter2017 by using different query
transformations. Since the queries in our framework bridge the
VG and MRC stages, we also replace original phrases with trans-
formed queries, and provide the results of visual grounding on the
Flickr30K Entities dataset. We find that the model with queries from
Keyword+Annotation achieves the highest 𝐹1 score. The reasons
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Figure 4: Example comparison among MRC-MNER, MRC-MNER-Text, and UMGF.

Figure 5: Resultswith different numbers of region candidates.

are that queries constructed by Keyword and Rule-based Template
Filling are relatively simple and contain less information, which
results in friendly VG performance but limits the language un-
derstanding of MRC. For Keyword’s Wikipedia, definitions from
Wikipedia are relatively general and do not precisely describe the
entity types, leading to inferior performance onMNER and VG tasks.
Compared with other transformations, the framework with queries
constructed by Keyword+Annotation achieves better results in both
tasks. Therefore, we apply queries from Keyword+Annotation to
MRC-MNER.
Effect of the Number of Candidate Regions. To check the influ-
ence of different numbers of region candidates, we set 𝑘 to several
values and depict the results in Figure 5. First, fewer region candi-
dates (𝑘 = 1) cannot provide sufficient image information for the
model. With the increase of region candidates, image information
can be supplemented and the model achieves the best result on
both datasets when 𝑘 = 4. Then more region candidates (𝑘 > 4)
will bring some noise, leading to the degradation of the perfor-
mance. The time spends on top-4 region candidates is 1.1 times
more than that of top-1 region candidates. See Appendix B for more
discussions.

4.5 Case Study
Here we conduct further qualitative analysis with two specific
examples, in which MRC-MNER recognizes the entities correctly

while the baseline models fail. We compare the results from MRC-
MNER, MRC-MNER-Text, and the competitive model UMGF. The
number of region candidates3 equals to 2. In Figure 4 (a), the sen-
tence contains three entities “Chelsea”, “Fernando”, and “Torres”
with ORG, PER, and PER types respectively. However, the baseline
UMGF mis-recognizes “Fernando” and “Torres” as ORG. We guess
it is because UMGF cannot detect the region of person accurately
(red box). Instead, MRC-MNER detects two regions (red boxes) for
PER, and extracts a group of people as well as logos on clothing
(green boxes) for ORG. This demonstrates the effectiveness of our
query-guided visual grounding and multi-level modal interaction
stages. Besides, because of the lack of auxiliary image information,
MRC-MNER-Text ignores the entity “Torres” by mistake.

Figure 4 (b) illustrates a more challenging case, where the entity
“Uniqlo” is ambiguous in the sentence, and the image cannot provide
useful regions about ORG. It can be seen that both UMGF and MRC-
MNER cannot locate the relevant visual regions for this entity
correctly. However, both MRC-MNER and MRC-MNER-Text can
recognize “Uniqlo” and label it as ORG. We conjecture that the solid
understanding capability of MRC and the guidance of query prior
information contribute to the final correct prediction.

5 CONCLUSION AND FUTUREWORK
In this work, we propose MRC-MNER, a framework for multi-
modal entity recognition using machine reading comprehension.
Our model bridges MRC and VG by designing queries with prior
information of entity types to facilitate MNER task. We train a
query-guided visual grounding model via transfer learning to pro-
mote fine-grained text-image alignments, and propose a multi-level
modal interaction model to simulate text-image and inner-text re-
lations. We find that the image contains a wealth of information.
For future work, we will try to distill more useful parts from the
image for multimodal named entity recognition.
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A STATISTICS OF DATASETS
In this section, we present the statistics of constructed VG corpus
in Section 3.2 and Twitter2015/2017 in Section 4.1. The details are
shown in Table 5 and Table 6, respectively.

Table 5: Statistics of our constructed VG corpus (F.30k and
Tw.15/17 denote Flickr30k and Twitter2015/2017, respectively
and b.-box denotes bounding box).

Total data volume 26,311
F.30K data (unmodified) 12,504

F.30K data + modified query data 12,504
Tw.15/17 data + query + b.-box 1,303

LOC query data 2,983 (F.30K) + 700 (Tw.15/17)
ORG query data 4,191 (F.30K) + 350 (Tw.15/17)
PER query data 4,362 (F.30K) + 253 (Tw.15/17)

MISC query data 968 (F.30K)

Table 6: The Statistics Summary of Two MNER Datasets.

Type Twitter2015 Twitter2017
Train Dev Test Train Dev Test

PER 2,217 522 1,816 2,943 626 621
LOC 2,091 522 1,697 731 173 178
ORG 928 247 839 1,674 375 395

OTHER 940 225 726 701 150 157
Total 6,176 1,546 5,078 6,049 1,324 1,351

# Tweets 4,000 1,000 3,257 3,373 723 723

B FURTHER DISCUSSIONS
B.1 Impact of sentence length.
To further analyze the influence of different sentence lengths, we
slice the test sets of Twitter2015 and Twitter2017, respectively. We
divide the test set into three subsets according to the sentence
length, namely Short (sentence length ≤ 10),Medium (10 < sen-
tence length ≤ 20) and Long (sentence length > 20). Obviously, the
Medium subsets contain the most test sentences and entities.

Table 7: Results on subsets of different sentence lengths.

Methods Twitter2015 Twitter2017
Short Medium Long Short Medium Long

UMGF 74.42 74.43 74.57 85.71 86.15 81.66
MAF 74.02 72.65 73.48 85.84 86.04 81.65

MRC-MNER 74.51 75.25 73.08 86.81 88.05 82.37

Table 7 shows the F1 score of different models on different testing
subsets. Here, we compare our proposed MRC-MNER with two
competitive baselines UMGF4 and MAF5. It’s observed that MRC-
MNER outperforms two baselines on all subsets except Long subset
of Twitter2015, which proves the advantage of our query-guided

4We use the model released by the author from https://github.com/TransformersWsz/
UMGF to conduct experiment.
5We use the code published from https://github.com/xubodhu/MAF to train the model
and perform group test.

Table 8: Performance comparison of MRC-MNER and UMGF
on Twitter2015-clean dataset.

Methods Twitter2015-clean
Pre. Rec. F1

UMGF 73.23 74.67 73.94
MRC-MNER(Ours) 77.28 72.59 74.86

VG and multi-level model interaction. Meanwhile, we observe two
interesting findings.

1) It can be seen that MRC-MNER has more significant improve-
ments on theMedium subset against two baselines. We conjecture
that the gains mainly benefit from MRC’s solid language under-
standing ability, which can better capture the local and global depen-
dence of sentences. 2) For Short and Long subsets, the performance
of MRC-MNER is worse than the result in the Medium subset. We
analyze the reason and find that there is insufficient information
for short sentences, so more useful information needs be extracted
from images to supplement the semantic information of the text.
For long sentence, there are usually multiple entities of the same
type (e.g., “Lorenzo[PER] of Little Rock[LOC] won $ 10,000 playing
a $ 10 $ 10,000 Blowout instant ticket from Buffalo Store[LOC] in
Little Rock[LOC]”), which brings great challenges for the MNER.
Above analyses also point out the improvement direction of this
task, we leave it as future work to tackle above issues.

B.2 Performance on Twitter2015-clean.
In Section 4.2, the results show that our MRC-MNER beats the cur-
rent state-of-the-art models on Twitter2017, but yields competitive
results on Twitter2015 (0.22% below the best model). To explore the
reasons, we further analyze the difference of two datasets. We find
that the sentences contain more noises in Twitter2015, such as links
at the end of each sentence (e.g., the first data in Twitter2015 train-
ing set “RT @JayKenMinaj : Me outside of where George Zimmerman
got shot at . You know God is so good . http://t.co/Z3neVBQ7vF”),
which results in negative impact for our model on recognizing en-
tities. Hence, we remove these links from sentences and obtain a
clean version, namely Twitter2015-clean (e.g., the above post be-
comes “RT @JayKenMinaj : Me outside of where George Zimmerman
got shot at . You know God is so good.”).

Table 8 illustrates the experimental results of MRC-MNER and
UMGF on Twitter2015-clean. It’s observed that MRC-MNER shows
significant improvement against UMGF. These results indicate that
the potential of the MRC-MNER framework can be further inspired
by the semantic coherence in the clean context. Meanwhile, it also
reveals the limitation of current MNER dataset, which motivates
us to construct a better MNER dataset of higher quality to facilitate
this research.
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