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A B S T R A C T   

Applying deformable transformer for dense video captioning has achieved great success recently. However, 
deformable transformer only explores local-perspective perception by attending to a small set of key sampling 
points, which will make the decoder short-sighted and generate semantically incoherent and contradictory dense 
captions for a long video. In this paper, we propose a novel Multi-Perspective Perception Network to improve this 
problem. We first introduce a hierarchical temporal-spatial summary method to generate global-perspective 
summary context for each decoder layer and avoid redundant information. Then our new designed multi- 
perspective attention encourages the model to selectively incorporate the multi-perspective perception 
feature. Finally, we propose a novel multi-perspective generator to perform both multi-perspective feature fusion 
and caption generation. Experiments show that our proposed model outperforms previously published methods 
and achieves a competitive performance on ActivityNet Captions and YouCook2. The design of our model also 
shows the universality of other visual tasks that we obtain comparable results by applying our model for Object 
Detection and Paragraph Video Captioning.   

1. Introduction 

Video captioning [1] is an important branch of visual captioning, 
which needs to produce a single description by giving a short video. 
Nevertheless, generating only one sentence may be insufficient to 
describe a long and untrimmed video in the real world. To tackle this 
issue, dense video captioning (DVC) [2–6] is proposed to automatically 
localize and describe multiple events in the video. Thus, DVC can be 
divided into two subtasks. The first subtask aims at localizing all possible 
events in a video, while the second focuses on representing these pro
posals to generate language descriptions. 

Most previous approaches [7,2,4,8] model temporal localization and 
caption generation as two fully separate tasks. However, they rigidly 
follow the rule to first localize events in videos by employing temporal 
action proposal models [9] and then describe each event with a sen
tence, where the caption generation performance will be affected by 
event localization. To overcome this problem, PDVC [10] jointly models 
these two tasks with an end-to-end framework to further improve dense 
video captioning performance. It leverages deformable transformer [11] 

to model long sequential video, for vanilla transformer suffers from slow 
convergence and high memory usage. 

Despite showing advantages, PDVC has limitations. For deformable 
transformer [11], the backbone of PDVC, adopts local-perspective 
attention [12] to accelerate the inference time. This local perspective 
perception may bring semantic information decay in deeper decoder 
layers and make the decoder short-sighted, which will restrain the 
capability of the model. For another, it is essential to capture global 
perspective perception to generate semantically coherent dense captions 
for a long video. In Fig. 1 (a), the deficiency of global perspective 
perception leads to the generated captions showing worse coherence 
and video-semantic consistency. Previous work [13] tries to use self- 
attention to enhance global-perspective perception for videos. Never
theless, directly applying self-attention to a long video suffers from 
redundant connections and over-smoothing [14], which makes the 
model even harder to optimize. Therefore, the key point is how to 
provide global perspective perception with lower redundancy. 

Based on above analyses, we propose a novel architecture Multi- 
Perspective Perception Network (MPP-Net) for dense video captioning, 
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which is equipped with three modules including a Hierarchical Tem
poral Spatial Summary method (HTSS), a new designed multi- 
perspective attention (MPA), and a multi-perspective captioning 
generator (MSG). 1) To avoid irrelevant information and generate video 
summary context for global perception, we first propose hierarchical 
temporal-spatial summary method (HTSS) to extract the most dis
tinguishing pixel in a temporal-spatial representation space. Inspired by 
previous work [15,16] that shows deeper layers of transformer trend to 
focus more on long distance context, HTSS will gradually magnify the 
temporal duration size in the deeper decoding layer. 2) A multi- 
perspective perception is introduced to integrate a multi-perspective 
attention (MPA) layer. MPA takes advantage of both self-attention and 
deformable attention and weighs multi-perspective contributions via a 
learned gate. 3) We also design a multi-perspective captioning generator 
(MPCG) with a two-layer LSTM structure, with the first LSTM guiding 
visual attention combined with multi-perspective information and the 
second LSTM generating captions. We evaluate our proposed model on 
ActivityNet Captions and YouCook2, and the experimental results show 
that our model outperforms all previous models significantly in all 
metrics and achieves new state-of-the-art performance. Moreover, we 
conduct both quantitative and qualitative analyses to demonstrate that 
MPP-Net can significantly enhance the quality and coherence of the 
dense video descriptions. The architecture of Multi-Perspective 
Perception also shows universality in other visual tasks, and we 
extend our model on another two tasks, Object Detection and Paragraph 
Video Captioning, improving the performance on both two tasks.  

1. We propose a novel architecture, MPP-Net, for dense video 
captioning, which includes three novel designed modules: a 

hierarchical temporal spatial summary method, a multi-perspective 
attention, and a multi-perspective captioning generator.  

2. Experimental results show our model establishes a new competitive 
performance on ActivityNet Captions and YouCook2 in terms of all 
metrics. Extensive experiments are conducted to verify the contri
bution of different components.  

3. The architecture of MPP-Net shows universality in other visual tasks, 
where it also improves the performance on Object Detection and 
Paragraph Video Captioning. 

2. Related Work 

2.1. Video Captioning 

Inspired by the success of neural models in translation systems [17], 
numerous effective models [18–21], have been developed for video 
captioning. The underlying concept of this approach is to train two 
Recurrent Neural Networks (RNNs) in an encoder-decoder structure. 
Specifically, an encoder inputs a set of video features, aggregates its 
hidden state, and then transfers it to a decoder for generating a caption. 
In order to enhance the performance of the captioning model, several 
methods have been proposed, such as shared memory between visual 
and textual domains [22,23], spatial and temporal attention [24], 
reinforcement learning [25], semantic tags [26], and other modalities 
[27,28]. Later efforts such as CLIP4Caption [29] and SWINBERT [30] 
boost the performance by employing pretrained modules to enhance 
multimodal representation. However, these approaches aim at gener
ating only one sentence for an input video, which is insufficient for 
describing long and untrimmed videos. To tackle this issue, dense video 
captioning is proposed to automatically describe multiple events in the 
video. 

2.2. Two-stage Dense Video Captioning 

Dense video captioning aims at combining both event localization 
and event captioning. Due to the lack of spatial annotation, earlier ap
proaches show inferior performance, especially in localizing the events. 
[2] introduced the dense captioning task and a benchmark dataset: 
ActivityNet Captions. They also proposed a two-stage pipeline that first 
detects events with a variant method of action detection proposal, then 
describes the event with an attention-based LSTM. After that, Bi-SST 
[31] applied a bidirectional event proposal module which exploits 
both past and future context for proposal prediction. [32] directly dealt 
with the dense video captioning task by designing different levels of 
hierarchical LSTMs to retrieve intra-event and inter-event descriptor. 
[7] proposed an event-centric hierarichal network to employ scene- 
level, event-level, and frame-level contents simultaneously. In addi
tion, some researches [8,6] have also been proposed to detect other 

Fig. 1. In example (a), it provides an incoherent and inconsistant caption result 
by merely utilizing local-perspective perception. Example (b) shows hierar
chical summary contexts can further improve generated captions in terms of 
coherence and video semantic consistency. 

Fig. 3. The overall architecture of our model. In the 
encoder network, we propose the hierarchical tem
poral spatial summary(HTSS) to guide the model to 
produce distinguishing global-perspective visual fea
tures. In the encoder network, the multi-perspective 
attention (MPA) layer is proposed to explore multi- 
perspective perception in the video. We further 
designed a multi-perspective captioning generator 
(MPCG) to generate captions incorporating multi- 
perspective information dynamically.   
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modalities (e.g., audio and speech) to improve dense video captioning. 
Generally, all these methods take the two-stage “localize-then-describe” 
pipeline to boost dense video captioning. 

2.3. End-to-End Dense Video Captioning 

[4] proposed a novel framework that jointly trained the event 
localization and event captioning in an end-to-end manner. Moreover, 
massive approaches have investigated the application of the Trans
former [33] model to the dense video captioning task. In particular, [13] 
proposed an end-to-end transformer model to exploit a differentiable 
masking network to ensure the consistency between proposal and 
captioning module during training. However, all these methods focus on 
generating a large number of proposal-caption pairs, which directly 
leads to redundancy or inconsistency and ultimately reduces the read
ability of generated captions. To alleviate this problem, [34] introduced 
an event selection network to adaptively select a sequence of event 
proposals, thus improving the readability and coherence of the gener
ated descriptions. Though promising results were achieved, this method 
is not an end-to-end model, and the subtasks need to be trained sepa
rately. Most recent work [10] combines the advantages of [13,34] and 
boosts the performance by formulating the dense caption generation as 
an end-to-end task. It accelerates the inference time via the deformable 
transformer and models the DVC tasks with three parallel subtasks. 
However, the deformable attention only explores local-perspective 
perception, and that leads to incoherent and inconsistent captions. 

3. Methodology 

The overview of our MPP-Net is shown in Fig. 3, which can be 
conceptually divided into a feature encoding network and a decoding 
network. The feature encoding network encodes the input video into 
visual representations, where the frame-level features are extracted by 
pretrained action recognition network [35,36]. Then the encoding 
feature and summary context obtained from HTSS will be fed into multi- 
perspective attention module to explore multi-perspective perception 
for the video. On the top of the network, three parallel subtasks are 
applied to generate the dense captions. We will introduce each 
component in detail in the following subsections. We use the interpo
lation operation to re-scale the feature temporal dimension to a fixed 
number T. Then we add M temporal convolutional layers to get feature 
sequences across multiple resolutions. Finally, the multi-scale features 
with their positional embeddings are fed into the deformable trans
former encoder. The output features are denoted as f ∈ RL×C,L = {T +

T/21 + … + T/2M}. 

3.1. Hierarchical Temporal Spatial Summary Method 

In order to solve the issue that self-attention suffers from redundant 
connections, over-smoothing, and relation ambiguity, we present an 
intuitive but effective method named Hierarchical Temporal Spatial 
Summary (HTSS) to reduce redundant information. As shown in Fig. 2, 
we hypothesize that the visual features are very similar in a temporal- 
spatial representation space. The encoding feature can be denoted as 
X ∈ RT×A, temporal duration size as t ∈ {1,2,…T}, where A represents 
the spatial size and T is total length of the video. Thus, the encoding 
feature can be formulated as X1,X2,Xt…XT, where Xt ∈ Rt×A. To avoid 
bring extra computing burden, HTSS simply retains the most dis
tinguishing with max representing value to obtain the temporal sum
mary st. For one layer, the output of Hierarchical Temporal Spatial 
Summary (TSS) is [s1, s2, st…sT]. It summaries the video from a more 
macroscopic perspective compared to deformable attention. 
{

f̃i

}K

i=1
=
{

TSS1

(
f
)
,TSS2

(
f
)
,TSSj

(
f
)
,….TSSK

(
f
)}

(1)  

where TSSj denotes Temporal Spatial Summary (TSS) with different 

temporal duration size for jth decoding layer and {̃fi}
K
i=1 denotes final 

video summary context of HTSS. Note that the number of the pathways 
K is equal to the number of the decoder layers. 

3.2. Multi-Perspective Perception Decoder 

This decoder aims to obtain multi-perspective perception according 
to encoding feature, video summary context and event queries. 

Multi-perspective Attention (MPA). MPA aims to integrate the 
output of the encoder f ∈ RL×C and the global-perspective summary 

context {̃fi}
K
i=1 conditioned on the event queries. It takes advantage of 

both deformable attention and self-attention. Concretely, self-attention 
is exploited to explore global-perspective perception with summary 
context generated by HTSS, while deformable attention is exploited to 
learn local-perspective perception. Besides, we apply a learned gate to 
weigh the multi-perspective contributions at each decoding layer. 

In order to show this more clearly, we illustrate MPA in formula. 
Given initial event query vectors {qj}

N
j=1 ∈ RN×C and encoding feature f, 

we first employ a multi-scale deformable attention(MSDAtt) to explore 
local-perspective perception Ol ∈ RN×C denoted by: 

Ol = MSDAtt
({

qj
}N

j=1,
{

pj
}N

j=1, f
)

(2)  

where {pj}
N
j=1 denotes the reference points of {qj}

N
j=1. To avoid bringing 

semantic decay for video summary context f̃i, we then apply parallel 
multi-head self attention(MHAtt) layer to model {qj}

N
j=1 and ̃fi to capture 

global-perspective perception Og ∈ RN×C, denoted by: 

Og = MHAtt
({

qj
}N

j=1, f̃i, f̃i

)
(3) 

These multi-perspective perception vectors are then selectively in
tegrated through a learning gate, which can be defined as: 

M = αg ⊗ Og + αl ⊗ Ol (4)  

where αg ∈ RN×C and αl ∈ RN×C are the weight matrices, which modu
late the contribution of Og and Ol, respectively. These two weight 
matrices are calculated as: 

αg = σ(Wg([Y,Og])+ bg) (5)  

αl = σ
(
Wl( ( [Y,Ol]+ bl) (6)  

where [., .] represents concatenation, σ is the sigmoid activation. {Wg,

Fig. 2. HTSS extracts the most distinguishing regions in a temporal spatial 
representation to obtain video summary context. 

Y. Wei et al.                                                                                                                                                                                                                                     



Neurocomputing 552 (2023) 126523

4

Wl} are 2C × C weight matrices, and {bg, bl} are learnable bias vectors. 
Architecture of decoding layers. At each decoding layer, a self 

attention layer is first utilized to perform interaction between different 
event queries {qj}

N
j=1. Then, we apply our multi-perspective attention 

(MPA) to capture multi-perspective perception. Besides, the decoder 
layer contains a position-wise feed-forward layer, and all components 
are normalized with AddNorm(AN) operations. The output Z of the 
current decoder layer can be written as: 
{

Zj
}N

j=1 = AN
(

MPA
(

AN
(

MHAtt
({

qj
}N

j=1

))))
(7)  

{
Z̃j

}N

j=1
= AN

(
F

({
Zj
}N

j=1

))
(8)  

where {qj}
N
j=1 are the vectors of input sequence, and F denotes the 

position-wise feed-forward layer. Finally, we stack multiple decoding 
layers together and generate the event queries for the following parallel 
subtasks. 

3.3. Parallel Subtasks 

To generate the final dense captions, there are three parallel subtasks 
on the top of the network, including a designed multi-perspective 
captioning generator(MPCG), a localization detector, and an event 
counter. 

Multi-perspective captioning generator (MPCG) To further 
encourage the model to incorporate multi-perspective information and 
generate captions dynamically, we devise a two-layer LSTM structure for 
both multi-perspective feature fusion and caption generation. Let denote 
h1

t and h2
t as the hidden states for the first LSTM and the second LSTM 

respectively, where t is current time step. The input for the first LSTM at 
each time step consists of the previous output h2

t− 1 of the second LSTM 
and previously generated word wj,t− 1, given by: 

h1
t = LSTM

( [
h2

t− 1,wj,t− 1
]
, h1

t− 1

)
(9)  

where wj,t− 1 is an embedded matrix cross the vocabulary Σ. 
Given the output of the first LSTM h1

t and the output of the MPA 

decoder {Z̃j}
N
j=1, at each time step t, we use a multi-scale deformable 

attention layer to generate sampling points from each fl, thus generating 
the local-perspective relations at each time step. To model the global- 
perspective relations, we employ a multi-head self-attention layer be
tween the output of MSDAtt and h1

t , which can be given by: 

Ô
j
t = MHAtt

(
h1

t ,MSDAtt
([

h1
t ,
{

Z̃j

}N

j=1

]
, ph

j , fl
))

(10)  

where ph
j represents the reference points and Ô

j
t denotes the multi- 

perspective attended features. 

The input to the second LSTM consists of the attended features Ô
j
t, 

concatenated with the output of the attention LSTM h1
t and the event 

query q̃j, given by: 

h2
t = LSTM

([
h1

t , Ô
j
t,
{

Z̃j

}N

j=1

]
, h2

t− 1

)
(11) 

At each time step t, the output of the language LSTM h2
t is leveraged 

for the prediction of next word wj,t via an FC layer with softmax 
activation. 

Localization Detector. It aims to predict the segment location and 
the foreground confidence conditioned on each event query induced by 
the proposed decoder. After processed by multi-layer perceptron, a set of 

detected events 
{

tsj , tej , cloc
j

}N

j=1 
are obtained, where tsj and te

j are the start 

time and the end time of j-th event. cloc
j is the localization confidence of 

the event query q̃j. 
Event counter. It is a module that transforms the event queries 

{q̃j}
N
j=1 into a fix-size vector rlen through a max-pooling layer and a FC 

layer with softmax activation, where each value refers to the possibility 
of a specific number. During the inference stage, the outputs are ob
tained by selecting the top Nset events with accurate boundaries and 
good captions from N event queries, where Nset is obtained by argmax 
operation. The confidence of each event query is calculated by: 

cj = cloc
j +

(
μ

Mγ
j

∑Mj

t=1
log

(

ccap
jt

)

(12)  

where ccap
jt is the probability of the generated word, γ is a modulation 

factor for rectifying the influence of caption length and μ is the balanced 
vector. 

3.4. Training loss 

Following previous works [37,10], we also use the Hungarian algo
rithm to find the bipartite matching results based on N trained events 
with their locations and captions. Specially, it contains two parts: the 
matching cost and the prediction loss. For the matching cost, we define it 
as follows: 

C = αgiouLgiou +αclsLcls (13)  

where Lgiou represents the generalized IOU [38] between predicted 
temporal segments and ground-truth segments. Lcls represents the focal 
loss [39] between the predicted classification score and the ground-truth 
label. For the prediction loss, we calculate the weighted sum of gener
alized IOU loss, classification loss, countering loss, and caption loss: 

L = βgiouLgiou + βclsLcls + βecLec + βcapLcap (14)  

where caption loss Lcap and countering loss Lec are both the cross- 
entropy loss between the predicted result and the ground truth. 

4. Experiments 

In this section, we first introduce the experimental setup. Then, we 
present the comparative results and conduct ablation study with more 
model variants. Finally, we show the advantage of our model by a case 
study and discuss the limitation of our approach. 

4.1. Datasets and Evaluation 

All our experiments were conducted on two popular dense video 
captioning benchmarks ActivityNet Captions [2] and YouCooks [40]. 
ActivityNet Captions contains 20k long untrimmed videos of various 
human activities, which follows a standard split including 10009 
training videos, 4925 validation videos, and 5044 testing videos. Each 
video, on average, lasts 120 s and contains 3.65 temporally localized 
captions. YouCook2 consists of 2000 untrimmed videos of cooking 
procedures, each has 7.7 annotated segments with associated sentences. 
We use the official split with 1333/457/210 videos for training, vali
dation, and testing. 

We evaluate our model with two kinds of evaluation metrics. To 
evaluate the captioning performance, we take the most widely used 
automatic metrics like BLEU [41], METEOR [42], ROUGE-L [43], CIDEr 
[44], and SODA_c [45] that is recently proposed for evaluating the 
coherence of caption. And the performance of event proposal is verified 
with precision, recall and F1-score (i.e., the harmonic mean of precision 
and recall), by calculating average IOU score with threshold of 0.3, 0.5, 
0.7, 0.9. And we report more detailed BLEU scores in ablation study to 
fully measure the performance of different modules. 
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4.2. Implementation Details 

We take the same feature extraction method with previous works 
[13,10] for fair comparison. We employ the widely used C3D [35] action 
recognition model as the backbone to obtain features on ActivityNet 
Captions and adapt TSN [46] model to extract features for YouCook2. 
The MPP-Net encoder is composed of two stacked encoder layers with 4 
levels multi-scale deformable attention, and the decoder consists of 
three stacked decoder layers with the proposed multi-perspective 
attention. Note that the number of event queries is 10 for ActivityNet 
Captions and 100 for YouCook2. Besides, the hidden size is set to 512 in 
MSDAtt/MHAtt layers and 2048 in feed-forward layers. For the pro
posed MPCG, hidden dimension is 512 for both the attention LSTM and 
the language LSTM. During training stage, we use an initial learning rate 
of 5e− 5. All models are trained with Adam optimizer [47] and mini- 
batch size of 1. To search the optimal parameters for HTSS module, 
we test different scales of HTSS with the temporal duration size of 4, 8 
and 16 respectively on ActivityNet Captions. For the event counter, we 
choose the maximum count as 10/20 for ActivityNet Captions/You
Cook2. In Eqn. 12, γ and μ are set to 2 and 1.0 respectively. The cost 
ratios in bipartite matching are αgiou : αcls = 2 : 1 and the loss ratios are 
βgiou : βcls : βec : βcap = 2 : 1 : 1 : 1. 

4.3. Main Results 

In this section, we report main results of the proposed model MPP- 
Net and the SOTA methods on both localization task and dense 
captioning task. And we evaluate the caption performance on above two 
public datasets. 

Localization performance. Table 1 shows the results on event 
localization task. Here, the comparison methods can be divided into two 
categories. The first follows a two-stage scheme (i.e. MFT [48] and SDVC 
[34]), which generates event proposals by a “localize-then-describe” 
paradigm. The second follows an end-to-end scheme (i.e. PDVC [10] and 
MPP-Net), which outputs the event proposals in a parallel manner. It can 
be seen that MPP-Net not only exhibits better performances than the 
two-stage methods MFT and SDVC, but are also slightly better than the 
end-to-end method PDVC in terms of precision, recall and F1-score. 
Similar to the findings in [10], we conjecture that the parallel decod
ing can implicitly capture the location-aware features from caption su
pervision, helping the optimization of the event localization. 

Dense captioning performance. Table 2 summarizes the experi
mental results of various models on ActivityNet Captions. For fair 
comparison, we respectively show the performance by utilizing ground- 

truth proposals and predicted proposals. Under the challenging setting 
that the model needs to predict proposals by itself, MPP-Net outperforms 
all the baselines by a large margin especially in terms of CIDEr and 
SODA_c. Specially, MPP-Net obtains CIDEr score of 29.76, which is the 
most important metric to measure the performance of video caption. 
This is to-date the best performance and outperforms previous SOTA 
model PDVC by 4. Besides, the SODA_c score of MPP-Net is 5.61, which 
is 3.5 higher than the previous best performance. Under the easier 
setting with GT proposals, the trend is similar to above observations that 
MPP-Net also surpasses all the previous best methods. The improve
ments generally demonstrate the advantage of exploiting multi- 
perspective interactions via multi-perspective attention, which facili
tates both the quality and coherence of generating descriptions. To 
further verify generalization of our model, we report the dense 
captioning performance on YouCook2 in Table 3. The substantial im
provements of MPP-Net on the YouCook2 continues to verify the 
importance to integrate both local and global dependences. 

4.4. Ablation Study 

In this section, we conduct extensive ablation studies to verify the 
contribution of each component in our MPP-Net, including HTSS, 
MPCG, and MPA. 

Table 1 
Event localization results on the validation set of ActivityNet Captions.   

Recall Precision F1 

MFT [48] 24.31 51.41 33.01 
SDVC [34] 55.58 57.57 56.56 
PDVC [10] 55.42 58.07 56.71 
MPP-Net 55.58 58.37 56.86  

Table 2 
The results of the dense video captioning task on the ActivityNet Captions validation sets in terms of BLEU4(B4), METEOR(M), CIDEr(C) and SODA_c.  

Method Feature GT proposals Predicted proposals   

B4 M C B4 M C SODA_c 

DCE [2] C3D 1.60 8.88 25.12 0.17 5.69 12.43 - 
TDA-CG [31] C3D - 9.69 - 1.31 5.86 7.99 - 

DVC [4] C3D 1.62 10.33 25.24 0.73 6.93 12.61 - 
SDVC [34] C3D - - - - 6.92 - - 

Efficient [49] C3D - - - 1.35 6.21 13.82 - 
ECHR [7] C3D 1.96 10.58 39.73 1.29 7.19 14.71 3.22 
PDVC [10] C3D 2.64 10.54 47.26 1.65 7.50 25.87 5.26 
MPP-Net C3D 2.71 10.59 50.07 2.04 7.61 29.76 5.61  

Table 3 
Dense captioning on YouCook2. We report BLEU(B4), METEOR(M) and CIDEr 
(C) to align with previous method.  

Methods Feature Predicted proposals   

B4 M C 

MT [13] TSN 0.30 3.18 6.10 
ECHR [7] TSN - 3.82 - 
PDVC [10] TSN 0.80 4.74 22.71 
MPP-Net TSN 0.99 4.81 24.11  

Table 4 
The performance with varying temporal duration size of HTSS. “no summary” 
means removing the HTSS module. Notice that we replace the MPCG module 
with ordinary LSTM to improve comparability and experiment confidence.  

#d temporal duration size Predicted proposals    

B1 B2 B3 B4 M C 

2 (no summary) 15.13 7.57 3.74 1.77 7.37 27.53 
2 (2/4) 15.21 7.65 3.72 1.83 7.42 27.39 
2 (2/8) 15.20 7.63 3.75 1.81 7.47 27.51 
2 (2/16) 15.21 7.70 3.71 1.83 7.45 27.73 
2 (4/8) 15.21 7.73 3.83 1.90 7.39 27.67 
2 (4/16) 15.30 7.74 3.84 1.86 7.29 28.48 
2 (8/16) 15.08 7.60 3.77 1.88 7.34 27.17 
3 (no summary) 15.04 7.55 3.70 1.79 7.51 26.62 
3 (2/4/8) 15.24 7.69 3.80 1.88 7.48 28.34 
3 (2/4/16) 15.26 7.66 3.74 1.83 7.49 27.82 
3 (2/8/16) 15.24 7.54 3.60 1.76 7.41 27.02 
3 (4/8/16) 15.50 7.78 3.81 1.89 7.56 28.55  
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Performance of HTSS. In order to study the effectiveness of HTSS 
and explore the optimal setting of HTSS for following experiments, we 
verify the performance of HTSS with varying temporal duration size in 
Table 4. Overall, HTSS shows its superiority compared to no summary 
model and the best result is achieved with temporal duration size of 
(4/8/16). It reveals increasing a larger initial temporal duration size is 
more conducive to the captioning performance, which is consistent with 
previous finding in [16] that higher decoder layer tends to focus more on 
longer distance of semantic contexts relevant to the task. According to 
above results, we choose the relatively optimal setting with 3 decoding 
layers and the temporal duration size of (4/8/16) in our experiments. 

Performance of MPCG. To evaluate the effectiveness of our multi- 
perspective captioning generator (MPCG), two model variants are 
compared: the first is MPP-Net without MPCG and the second is MPP- 
Net equipped with MPCG. Notably, “without MPCG” represents the 
model only using one LSTM layer to implement both visual attention and 
caption generation. From Table 5, we observe that MPCG can exhibit 
better captioning performance across all the compared metrics, 
demonstrating the advantage of enhancing the interaction between vi
sual content and natural sentence via our two-layer LSTM structure for 
dense video captioning. 

Performance of MPA. We also implement several ablated models by 
removing the learned gate, local-perspective perception, and global- 
perspective perception separately to examine the contribution of each 
components in Table 5. It’s observed that the performance of all model 
variants degrades compared to MPP-Net, which proves the effectiveness 
of integrating multi-perspective perception. And it also indicates global- 
perspective perception play a critical role in this task because when we 
remove the global-perspective attention and video summary context 
(global-perspective perception), the caption performance degrades 
drastically. Besides, the result also shows superiority of the learned gate 
on incorporating the advantages of both multi-perspective features. 

Impact of number of events. Furthermore, we verify the influence 
of using different initial event queries in multi-perspective perception 
decoder. From Table 6, we observe that the number of initial event 
queries has a significant impact on the results. To balance the locating 
and captioning performance, we choose the number of initial event 
queries to 10 in our experiments. This setting is also consistent with the 
event distribution of the ActivityNet Captions. 

4.5. Universality Discussion 

In order to evaluate whether the MPP-Net can be applied to other 
visual tasks, we first replace the subtask of MPP-Net for paragraph video 
captioning [52,51]. Note that paragraph video captioning is a simplified 
version of dense video captioning, which needs to generate a coherent 
paragraph without predicting the temporal location in the video. For fair 
comparison, we follow the schedule in [10] and remove the localization 
head to optimize the whole architecture with cross-entropy loss. Table 7 
shows the performance comparison between the state-of-the-art 
methods and our proposed MPP-Net. Similar to the observations in 
dense video captioning, MPP-Net outperforms several competitive 
baselines including Trans-XL [50], VTrans [13], MART [51], and PDVC 
[10] significantly. The improvements demonstrate the advantage of 
exploiting both multi-perspective interactions via our multi-perspective 
attention operator for paragraph video captioning. 

For computer vision task, we conduct the experiments by applying 
our model for Objective Detection, where the top caption decoder layers 
are replaced by detection layer. For fair comparison, all the experi
mental settings are the same as the original DETR-D [11]. In Table 8, our 
MPP-Net improves the performance in all metrics compared with 
Deformable Transformer, proving that the introduction of global- 
perspective perception helps the model to understand the image 
content. 

Table 5 
Ablation study. Here, ‘- MPCG’ ‘- L’, ‘- G’ and ‘- gate’ represent removing MPCG, 
local-perspective perception, global-perspective perception and the learned gate 
respectively.   

Predicted proposals   
B1 B2 B3 B4 M C   

MPP-Net 15.61 8.01 4.03 2.04 7.61 29.76   
- MPCG 15.50 7.78 3.81 1.89 7.56 28.55   
- MPCG - gate 15.31 7.72 3.82 1.90 7.49 27.95   
- MPCG - gate - L 15.32 7.69 3.70 1.75 7.39 28.47   
- MPCG - gate - G 15.04 7.55 3.70 1.79 7.51 26.62    

Table 6 
The performance of MPP-Net when changing the number of event queries.  

#q Predicted proposals  

Recall Precision B1 B2 B3 B4 M C 

5 55.86 56.70 14.72 7.10 3.23 6.98 7.07 25.81 
10 55.65 58.33 15.50 7.78 3.81 1.89 7.56 28.55 
20 53.21 59.03 15.02 7.59 3.78 1.91 7.62 25.67 
30 50.42 57.94 15.10 7.76 3.81 1.92 7.70 26.11 
50 52.82 57.91 15.02 7.62 3.80 1.94 7.53 26.07 
100 51.31 58.40 15.12 7.61 3.73 1.85 7.66 26.17  

Table 7 
Paragraph captioning on the ActivityNet Captions dataset [2].  

Method Features GT proposals   

B4 M C 

Trans-XL [50] visual + flow 10.39 15.09 21.67 
VTrans [13] visual + flow 9.75 15.64 22.16 
MART [51] visual + flow 10.33 15.68 23.42 
PDVC [10] visual + flow 11.80 15.93 27.27 
MPP-Net visual + flow 12.75 16.01 29.35  

Table 8 
Results of object detection. AP denotes the detection accuracy.  

Model AP50 AP75 APS APM APL 

DETR-DeFormer 62.6 47.7 26.4 47.1 58.0 
DETR-MPP-Net 63.2 48.1 26.7 47.5 58.4  

Fig. 5. Examples of dense video captioning results coupled with ground-truth 
temporal locations. It is noted that all three compared models use the same 
temporal locations. 
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4.6. Case Study 

In this section, we illustrate some examples to compare the 
description quality of PDVC [10] and MPP-Net. Two different settings 
are considered: the first setting is to generate video captions with 
ground-truth temporal locations, as shown in Fig. 5; the second one is to 
generate captions with predicted temporal locations, as demonstrated in 
Fig. 4. 

The text in different colors (blue vs. red) shows the difference be
tween the two models. It’s observed that, our MPP-Net can produce 
more accurate and descriptive sentences than PDVC. For example, in 
Fig. 5, MPP-Net understood the video and depicted the clip of T3 as 
“bumping into each other” while PDVC only generated vague expressions 
such as “get round the car”. Similarly, in Fig. 4, PDVC made some obvious 
mistakes during generation, e.g., it mentioned “holding a stick”, which is 

incorrect with the video content. Besides, PDVC can only roughly 
describe in T2 as “performing a routine”, while MPP-Net can accurately 
describe “performing a martial arts moves”. We argue that MPP-Net has 
the above advantages because it can figure out the connections among 
different events and also know how they are connected. In MPP-Net, the 
parallel decoder uses the HTSS method to obtain representative features 
in each event and uses the self-attention mechanism to measure how 
well they are related. By this way, the content of other events can 
effectively correct the mistakes that occurred when generating captions 
for the current event. 

Although the proposed MPP-Net performs well in the reported 
evaluation metrics, it still has some limitations. As can be seen in Fig. 6, 
MPP-Net is incapable of MPP-Net is incapable of describing the fine- 
grained events, such as “moving his hands up and down”, “bowing 
and nodding to the camera”. The phenomenon also existed in other 
dense video captioning methods. The reason for this phenomenon is that 
when using a temporal convolutional network to extract video features, 
it can only capture the coarse-grained features of video segments and not 
the fine-grained ones. As a result, the model is unable to perceive 
detailed information about events. In future work, we plan to incorpo
rate more prior knowledge, such as fine-grained knowledge of attributes 
and actions, to assist the model in generating descriptions. 

Fig. 4. Case study for an example video from the ActivityNet Captions validation set. The generated captions of our MPP-Net and PVDC [10] are compared with the 
human-annotated ground truth. Notably, we highlight the inconsistent captions in blue and improving captions in red. 

Fig. 6. Another case study for an example video. The generated captions of our MPP-Net are compared with the human-annotated ground truth. The red-marked 
sentences indicate fine-grained descriptions in ground truth. 

Table 9 
Results of human evaluation, with respect to metrics of relevance(Rel), coher
ence(Coh) and conciseness(Con).  

Metrics Rel Coh Con 

PDVC [10] 37% 41% 39% 
MPP-Net 63% 59% 61%  
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4.7. Human Evaluation. 

Considering the most reliable way to evaluate the quality of the 
description is with human judges, here we conduct further human 
evaluation in Table 9 to assess the performance of generated captions. 
Here, we only compare the MPP-Net with the most competitive baseline 
PDVC [10] for simplicity. Considering that this task is considerably 
challenging, the human evaluation does not include ground truth. We 
first apply MPP-Net and PDVC to generate captions for 100 cases 
randomly sampled from the test set. Then we shuffle the order of pre
dicted captions and hide the model name. A total of 10 college students 
who are proficient in English were invited to finish the human evalua
tion. Following previous works [51,53], three metrics are adopted, 
including relevance to verify how related the generated caption is to the 
content of the video, coherence to evaluate the logic, fluency, and 
readability of the generated caption; and conciseness to measure 
whether the captions are less verbose and repetitive. 

4.8. Discussion of Limitation 

In our experiments, we found an interesting phenomenon: that the 
number of events has a great impact on the performance. In Fig. 7 (a), we 
illustrate the curve of soda_c scores for PDVC and MPP-Net as the event 
number increases in the dataset. Generally, it shows that the soda_c 
scores of both models decrease sharply as the number of events in
creases, for videos containing too many events will make this task more 
challenging. Compared to PDVC, MPP-Net achieves better performance 
when the number of events is less than 4, which shows the advantage of 
global-perspective perception. However, to generate captions for the 
video with more events, the global-perspective perception shows a 
negative impact on our model. We guess it is hard to give a summary 
context for a complicated video, because some cases are usually disor
dered. Fig. 7(b) shows the distribution of the number of videos condi
tioned on the different numbers of events. It can be seen that most of the 
videos in ActivityNet Captions have 2 to 4 events, which explains MPP- 
Net’s better performance than PDVC in our experiments. In the future, 
we will continue to study how to effectively capture global-perspective 
perception in complex videos to tackle the above limitations. 

5. Conclusion 

In this paper, we propose a novel Multi-Perspective Perception 
Network to explore multi-perspective perception. It includes a hierar
chical temporal-spatial summary method that generates global- 
perspective summary context for each decoder layer while avoiding 
redundant information; a newly designed multi-perspective attention 
method that incorporates the summary context and local perspective 
feature selectively; and a novel multi-perspective caption generator that 

performs both feature fusion and caption generation. Experiments show 
that MPP-Net outperforms previously published methods and achieves 
competitive performance on ActivityNet Captions and YouCook2. It also 
shows universality and improves the performance in Object Detection 
and Paragraph Video Captioning. We hope our model can further 
facilitate related research. 
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