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Abstract

Contrastive learning (CL) has achieved aston-
ishing progress in computer vision, speech,
and natural language processing fields recently
with self-supervised learning. However, CL
approach to the supervised setting is not fully
explored, especially for the natural language
understanding classification task. Intuitively,
the class label itself has the intrinsic abil-
ity to perform hard positive/negative mining,
which is crucial for CL. Motivated by this,
we propose a novel label anchored contrastive
learning approach (denoted as LaCon) for lan-
guage understanding. Specifically, three con-
trastive objectives are devised, including a
multi-head instance-centered contrastive loss
(ICL), a label-centered contrastive loss (LCL),
and a label embedding regularizer (LER). Our
approach does not require any specialized net-
work architecture or any extra data augmenta-
tion, thus it can be easily plugged into existing
powerful pre-trained language models. Com-
pared to the state-of-the-art baselines, LaCon
obtains up to 4.1% improvement on the popu-
lar datasets of GLUE and CLUE benchmarks.
Besides, LaCon also demonstrates significant
advantages under the few-shot and data imbal-
ance settings, which obtains up to 9.4% im-
provement on the FewGLUE and FewCLUE
benchmarking tasks.

1 Introduction

In recent years, contrastive learning (CL) has been
widely applied to self-supervised representation
learning and led to major advances across computer
vision (CV) (He et al., 2019; Chen et al., 2020b),
speech (Saeed et al., 2021; Chen et al., 2021), and
natural language processing (NLP) (Fang and Xie,
2020; Gao et al., 2021; Yan et al., 2021). The ba-
sic idea behind these works is to pull together an
anchor and a “positive” sample in the embedding
space, and to push apart the anchor from many
“negative” samples. Since no labels are available, a
positive pair often consists of data augmentations

of the sample (a.k.a “views”), and negative pairs are
formed by the anchor and randomly chosen sam-
ples from the mini-batch. In visual representations,
an effective solution to generate data augmenta-
tions is to take two random transformations of the
same image (e.g., cropping, flipping, distortion and
rotation) (Chen et al., 2020b; Grill et al., 2020;
Chen et al., 2020c). For natural language, simi-
lar approaches are adopted such as word deletion,
reordering, substitution, and back-translation etc.
(Fang and Xie, 2020; Wang et al., 2021) However,
data augmentation in NLP is inherently difficult
because of its discrete nature. Therefore, some pre-
vious works (Gao et al., 2021; Yan et al., 2021) also
use dropout technique (Srivastava et al., 2014) to
obtain sentence augmentations.

Unlike self-supervised setting, some researchers
propose supervised contrastive learning (SCL)
(Khosla et al., 2020; Gunel et al., 2021; Suresh and
Ong, 2021) which can construct positive pairs by
leveraging label information. Examples from the
same class are pulled closer than the examples from
different classes, leveraging the semantics of la-
bels to construct negatives and positives rather than
shallow lexical information via data augmentation.
Despite the aforementioned advantages brought by
SCL, we argue that CL under supervised learning
is not fully explored because the label information
can be better utilized. On the one hand, labels
are usually not merely categorical indices in the
label vocabulary, but also contain specific semantic
meanings, especially in the language understanding
tasks. Thus labels can be used as positive/negative
samples or anchors when calculating contrastive
loss. On the other hand, label embedding enjoys
a built-in ability to leverage alternative sources of
information related to labels, such as class hier-
archies or textual descriptions. Once we obtain
representative label embeddings, they can be uti-
lized to enhance the image/text representations, and
finally facilitate the classification task. Previous la-



bel embedding based classification models (Wang
et al., 2018; Xiao et al., 2019) have demonstrated
the effectiveness of leveraging label information.

Motivated by above analysis, we propose a novel
label anchored supervised contrastive learning ap-
proach (denoted as LaCon), which combines the
advantages of both contrastive learning and label
embedding techniques. Specifically, we have the
following three novel designs: 1) Instance-centered
contrastive loss (ICL), which uses the InfoNCE
(van den Oord et al., 2018) to encourage each text
representation and its corresponding label repre-
sentation to be closer while pushing far away mis-
matched instance-label pairs. We further apply a
multi-head mechanism to catch different aspects of
text semantics. 2) Label-centered contrastive loss
(LCL), which takes label as anchor, and encour-
ages the label representation to be more similar
to the corresponding instances belonging to the
same class in a mini-batch than the instances with
different labels. 3) Label embedding regularizer
(LER), which keeps the inter-label similarity as low
as possible thus the feature space of each class is
more dispersed to prevent representation degener-
ation. By combining above three losses, LaCon
can learn good semantic representations within the
same space for both input instances and labels. It’s
also well aligned with the two key properties re-
lated to CL: alignment and uniformity (Wang and
Isola, 2020), where alignment favors encoders that
assign similar features to similar samples. Unifor-
mity prefers a feature distribution that preserves
maximal information, i.e., the uniform distribution
on the unit hypersphere.

To validate the effectiveness of LaCon, we per-
form extensive experiments on eight language un-
derstanding tasks. We take the popular pre-trained
language model BERT-base (Devlin et al., 2019) as
text encoder without loss of generality. For simplic-
ity, we predict the classification label by matching
the instance representation with label embeddings
directly. Since our approach does not require any
specialized network architecture or any extra data
augmentation, LaCon can be easily plugged into
other pre-trained language models. Additionally,
we also explore the capability of LaCon under more
difficult task settings, including few-shot learning
and data imbalance situations.

To summarize, our contributions are as follows:

• We propose a novel label anchored contrastive
learning approach for language understanding,

which is equipped with a multi-head instance-
centered contrastive loss, a label-centered con-
trastive loss, and a label embedding regular-
izer. All three contrastive objectives help the
model learn the joint semantic representations
for both input instances and labels.

• We conduct extensive experiments on eight
public language understanding tasks from
GLUE (Wang et al., 2019) and CLUE (Xu
et al., 2020) benchmarks, and experimental
results show the competitiveness of LaCon.
Additionally, we also experiment on more
difficult settings including few-shot learning
and data imbalance situations. LaCon exper-
imentally obtains up to 9.4% improvement
over BERT-base on FewGLUE (Schick and
Schütze, 2021) and FewCLUE (Xu et al.,
2021) benchmark tasks.

• We analyze the contribution of each ingredi-
ent of LaCon, and also visualize the learned
instance and label representations, showing
the necessity of each loss component and the
advantage of LaCon on representation learn-
ing over BERT fine-tuned with cross entropy.

2 Model

In this section, we introduce the details of LaCon.
We focus on the language understanding classifi-
cation tasks. For a multi-class classification prob-
lem with C classes, we work with a batch of train-
ing examples {xi, yi}, where 1 ≤ i ≤ N and
1 ≤ yi ≤ C. Our target is to learn discriminative
representations for both instances and class labels.
As Figure 1 shows, we propose three supervised CL
based objectives, including the instance-centered
contrastive loss, the label-centered contrastive loss,
and the label embedding regularizer loss.

2.1 The Input Encoder

The input of LaCon contains two parts consisting of
the text and all the labels for the task. Since SOTA
language understanding classification models fol-
low the “pre-training then fine-tuning” two-stage
paradigm, here we take the prevalent pre-trained
language model (PtLM) as input encoder. In this
paper, we select BERT-base (Devlin et al., 2019) as
the backbone for PtLM (denoted as f ) without loss
of generality. Given a text x = {w1, w2, ..., wM}
containing M tokens, the output of PtLM (i.e.
BERT) is E = fPtLM ([CLS], w1, ..., wM ) where



Figure 1: Overview of LaCon. The full line is the similarity between a instance and corresponding label, and the
dash line is the similarity between the mismatched instance and label. The lines with the same color denote the
per-instance or per-label loss.

the [CLS] token is the inserted sentence represen-
tation token and E ∈ R(M+1)×d. d is the dimen-
sion of the model. We use the first token output
E[CLS] ∈ Rd to represent the whole input text. We
then apply a projection head (denoted as g) that is
a 3-layer MLP with ReLU activation function for
each hidden layer to the E[CLS], where the dimen-
sion of the g is also d. For a mini-batch X with
N training samples, the text representations can be
obtained as Equation 1.

H = g ◦ fPtLM (X), where

X = x1, x2, ..., xN and H ∈ RN×d
(1)

Along with each mini-batch, LaCon also maps
the C classes into C label embeddings. For simplic-
ity, we look up in a learnable weight matrix Wemb

and map the kth label into the kth row of Wemb,
where the Wemb is randomly initialized. The di-
mension d is the same as PtLM. We then normalize
the vectors for both L and H using the l2 norm.

L = lookup([1, 2, ..., C],Wemb)

where L ∈ RC×d and Wemb ∈ RC×d
(2)

2.2 Instance-centered Contrastive Loss

Given a mini-batch of input text and correspond-
ing label (xi, yi), as shown in Figure 1 (a), the
instance-centered contrastive loss (ICL) takes each
instance xi as anchor, and mines positive and neg-
ative samples from class labels. ICL aims to en-
courage each text representation and corresponding
label representation to be closer while pushing far
away mismatched instance-label pairs. As shown in
Equation 3, we modify the InfoNCE (van den Oord
et al., 2018) to calculate the loss. Here we lever-
age the cosine similarity function as the distance
metric sim. τ is the temperature hyper-parameter,
which can be tuned to improve the performance.

Lower temperature increases the influence of exam-
ples that are harder to separate, effectively creating
harder negatives. Similar to the self-supervised CL,
ICL also takes only one positive and many neg-
atives. Differently, the positive is not generated
from data augmentation, and the negatives are not
randomly sampled from the same mini-batch. By
treating the class labels as data samples, ICL can
mine better positive and negatives with the supervi-
sion signal. By minimizing the ICL, the instance
representation is aligned to its label representation
in the same semantic space, which encourages the
model to learn a more representative embedding
for each class label.

LICL = − 1

N

∑
xi,yi

log
exp(sim(Hxi , Lyi)/τ)∑

1≤p≤C exp(sim(Hxi , Lp)/τ)
(3)

Inspired by the image-augmented views pro-
posed in CV (He et al., 2019; Chen et al., 2020b,c;
Grill et al., 2020), we also leverage the multi-head
mechanism proposed in Transformer (Vaswani
et al., 2017) to compute the ICL for each head rep-
resentation with smaller representation dimension.
Each head can be regarded as a clipped local view
of the instance or label representation. Suppose
we have m heads for both instance representation
and label representation, then for the kth head, the
corresponding representations for training sample
(xi, yi) are hkxi

and lkyi , and the dimension of each
vector becomes d′ = d/m. Then, we apply the con-
trastive loss for each head by following Equation 4.
Compared with InfoNCE, LICL and L′

ICL do not
suffer from small batch size issue (He et al., 2019;
Chen et al., 2020c) because we only need to con-
trast the instance representation with corresponding
label representation for per example loss.

L
′
ICL = − 1

N

m∑
k=1

∑
xi,yi

log
exp(sim(hk

xi
, lkyi)/τ)∑

1≤p≤C exp(sim(hk
xi
, lkp)/τ)

(4)



2.3 Label-centered Contrastive Loss

As shown in Figure 1 (b), we can take the
class label in a mini-batch as anchor, and mine
positive/negative samples from corresponding in-
stances. Suppose there are |P | classes in the batch,
where P = {p|1 ≤ p ≤ C ∧ |A(p)| > 0}.
We define that A(p) denotes the set of indices
of all positive instances whose label is p, i.e.
A(p) = {xi|yi = p}. And B(p) represents the
set of negative instances whose label is not p, i.e.
B(p) = {xj |yj ̸= p}. Then we can calculate the
label-centered contrastive loss (LCL) as Equation 5,
which promotes the instances of a specific label to
be more similar than the others for each label. Sim-
ilar to the previous SCL (Khosla et al., 2020; Gunel
et al., 2021), LCL also contains many positives per
anchor and many negatives. Different from SCL
which sums up all the softmax scores among all
pairs of instances of the same class in a batch, LCL
is based on comparing a specific label representa-
tion with corresponding instances (i.e. A(p)). LCL
is more stable as the label representation serves as
the anchor which can be stably updated.

LLCL = − 1

|P |
∑
p∈P

∑
a∈A(p)

log
exp(sim(Lp, Ha)/τ)∑

b∈B(p) exp(sim(Lp, Hb)/τ) (5)

ICL and LCL are complementary to each other
and more computationally efficient than previous
SCL. We conduct the detailed theoretical analysis
in Appendix A.3 due to space limitation.

2.4 Label Embedding Regularizer

Recent researches (Wang and Isola, 2020) demon-
strate that it is common and useful to add a reg-
ularization term during training to eliminate the
anisotropy problem. Inspired by this, We devise a
label embedding regularizer as shown in Equation 6
to promote the uniformity of our model and prevent
model degeneration. As illustrated in Figure 1 (c),
the label embedding regularizer (LER) encourages
the label representations to be dispersed in the unit
hypersphere uniformly. The LER loss is the expo-
nential mean of the cosine similarity for all pairs of
label representations. As −1 ≤ sim(Li, Lj) ≤ 1,
it is quite sensitive to the loss change as the gradi-
ent is larger than 1 for exp(x) w.r.t x ≥ 0. Thus,
we add 1.0 to the cosine similarity so that the value
of LER varies from 0 to e2 - 1.

LLER = avg(
∑
i ̸=j

(exp(1.0 + sim(Li, Lj))− 1.0) (6)

Finally, the overall loss function of LaCon is
summarized as follows:

L = L′
ICL + LLCL + λ ∗ LLER (7)

where λ is a hyper-parameter to balance the influ-
ence of our regularization term.

2.5 Matching based Class Prediction
Since LaCon is capable of learning instance and la-
bel representations jointly, we can predict the class
by matching the instance representation to all la-
bel representations directly during inference, just
as shown in Equation 8. We denote this simple
and direct approach as LaCon-vanilla. Hx is the
instance representation and Lj is the label represen-
tation of Class j. sim denotes the cosine similarity
and 1 ≤ j ≤ C denotes the corresponding label.
The advantage of LaCon-vanilla is that it does not
require any complicated network architecture and
can be easily plugged into the mainstream PtLMs.
As a result, our inference-time model contains ex-
actly the same number of parameters as the model
using the same encoder but trained with cross en-
tropy loss.

pred = argmax(j){scorej |sim(Hx, Lj)} (8)

2.6 LaCon with Label Fusion
Previous researches (Akata et al., 2016; Wang et al.,
2018; Xiao et al., 2019; Pappas and Henderson,
2019; Miyazaki et al., 2020) have proved that in-
corporating the label semantics into the sentence
representation can improve the model performance
because the label information can highlight the
alignment of input tokens and label information via
carefully designed fusion mechanism. Inspired by
LEAM (Wang et al., 2018), here we design a fusion
block to enhance the instance representations by
utilizing the learnt discriminative label embeddings.
We firstly calculate the cosine similarity interaction
matrix G between words and labels, and then apply
a convolution then max-pooling layer (convmax)
to measure the attention score (βi) for each word
attending the instance representation. The fusion
process is illustrated as Equation 9. Then the fused
vector z is fed into the projection head g to get the
enhanced instance representation.

m = convmax(G), where Gij =
< Li, Ej >

||Li|| · ||Ej ||

z =
∑
i

βiEi, where β = softmax(m)
(9)



To distinguish with the vanilla model above, we
name this approach as LaCon-fusion. Please note
that the fusion block is just applied between the text
encoder and projection head, so the class prediction
keeps the same as the LaCon-vanilla. Since the
fusion block is not the main focus of this paper, we
leave exploring more advanced fusion networks to
future work.

Datasets type class metric train dev
DBPedia genre 14 ACC 14K 70K
Tnews genre 15 F1 14.2K 10K
QQP PI 2 ACC 10K 40.4K

MRPC PI 2 ACC 4.07K 1.7K
QNLI NLI 2 ACC 10K 5.4K
RTE NLI 2 ACC 2.5K 278

CoLA LA 2 M’ corr 8.5K 1K
YelpRev senti 2 ACC 10K 10K

Table 1: The statistics of datasets that are from GLUE
(Wang et al., 2019) and CLUE (Xu et al., 2020)

3 Experiments

3.1 Experimental Setup

Datasets. We experiment on 8 public datasets
listed in Table 1. which are from GLUE (Wang
et al., 2019), CLUE (Xu et al., 2020), DBpedia,
and Yelp Dataset Challenge 2015. They cover five
representative tasks including sentiment analysis
(senti), genre classification (genre), paragraph iden-
tification (PI), natural language inference (NLI)
and linguistic acceptability (LA). To improve the
comparability and experiment confidence of the
models, we follow the experimental setup in (Chen
et al., 2020a) and use part of the training sets via
sampling and the full original test sets for evalua-
tion. We randomly sample without replacement at
most 5K (binary-class) / 1K (multi-class) training
instances per class from the whole datasets except
for MRPC, RTE, and CoLA. We use the wilcoxon
rank test (Wilcoxon, 1945) to check the statistic
significance. The results of 10 runs are reported for
each dataset in the format as “avg±std.dev".
Training & Evaluation. During training, we run
experiments for MRPC, RTE and CoLA with 10
random seeds on the whole training datasets and
run the sampling strategy with 10 repeats for the
remaining datasets. The average evaluation met-
rics are reported to avoid the noise and unstable
randomness of a single run. We use the AdamW
optimizer with initial learning rate as {1e-5, 2e-5,
3e-5} with linear learning scheduler, 6% of warm-
up steps of total optimization steps, and batch size

as {8,16,32,64,96}, where the hyper-parameters
are tuned for different datasets. For evaluation,
we leverage accuracy (ACC), Macro-F1 score and
Matthew’s corr (M’ corr) metrics to evaluate the
performance. We run 10 epochs for all the datasets1

and then evaluate the models on dev set. Our imple-
mentation is based on Huggingface Transformers2.

3.2 Baselines

Since LaCon is based on CL and label embedding
technique, we compare with several SOTA models
in language understanding including BERT-base
fine-tuned with cross-entropy (CE) loss, label em-
bedding based models, and self-supervised CL and
supervised CL models.

• CE: we directly follow the instructions of orig-
inal paper (Devlin et al., 2019) to finetune
BERT for both English and Chinese langauge
understanding tasks.

• LEAM: Wang et al. (2018) apply cosine simi-
larity to get matching scores between words
and labels and use CNN on the matching ma-
trix to get the label-aware attention weighted
text representation for classification.

• LSAN: Xiao et al. (2019) propose a label spe-
cific attention network that leverages label-
attention and self-attention mechanism with
an adaptive attention fusion strategy for multi-
label classification. We use softmax instead
of sigmoid for the model output due to our
multi-class classification setting.

• CE+CL: Yan et al. (2021) propose to learn
sentence representations by joint fine-tuning
PtLM with InfoNCE and cross-entropy based
on feature augmentation. Here we leverage
the framework of ConSERT (Yan et al., 2021)
and the feature augmentation in SimCSE (Gao
et al., 2021) to finetune and evaluate the PtLM
on classification datasets.

• CE+SCL: Gunel et al. (2021) propose to
boost sentence representation learning by fine-
tuning PtLM with both supervised contrastive
learning loss (Khosla et al., 2020) and cross
entropy loss. We follow the instructions in
(Gunel et al., 2021) to set hyper-parameters.

1We split 5% of training set as validation for early stop.
2https://github.com/huggingface/

transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


Methods YelpRev DBPedia Tnews QNLI RTE QQP MRPC CoLA
CE 82.0±0.5 98.7±0.3 54.5±0.3 87.1±0.2 67.3±1.9 82.2±0.5 85.6±1.6 60.9±0.8

LEAM 82.1±0.6 98.7±0.5 54.1±0.3 87.2±0.7 67.3±1.3 81.9±0.5 85.6±1.3 60.9±1.0
LSAN 82.2±0.6 98.7±0.7 54.9±0.8 87.1±0.3 69.7±1.0 81.2±0.5 86.1±0.7 61.6±0.9

CE+CL 82.2±0.6 98.5±0.5 53.9±0.5 87.3±0.3 67.8±1.5 82.4±0.3 83.1±0.7 61.1±0.7
CE+SCL 81.4±0.8 98.5±0.6 54.6±0.2 87.7±0.1 69.1±2.2 82.5±0.6 88.1±0.9 62.3±0.6

LaCon-vanilla 82.3±0.5 98.9±0.5 56.8±0.6 88.1±0.2 71.4±0.7 82.8±0.5 87.5±0.9 62.4±1.0
LaCon-fusion 83.1±0.8 99.5±0.2 56.7±0.3 88.4±0.3 72.2±0.9 83.7±0.5 88.6±0.7 62.8±0.5

Table 2: The experimental results for the Language Understanding Tasks. Best scores for each dataset are highlight
in bold (all with significance value p < 0.05).

LEAM and LSAN are label embedding based
methods while CE+CL and CE+SCL are con-
trastive learning based methods. To compare all
models fairly, we use BERT-base encoder for all
the baselines and our proposed model.

3.3 Main Results

We report the experimental results of eight lan-
guage understanding tasks in Table 2. It’s observed
that, LaCon-vanilla outperforms all the baselines
in 7 datasets except MRPC, and LaCon-fusion
achieves the best performance across all datasets.
Specifically, 1) LaCon-vanilla outperforms BERT
fine-tuned with CE by 4.1%, 2.3%, 1.9%, and 1.5%
on RTE, Tnews, MRPC, and CoLA respectively,
which indicates our proposed novel CL approach
can facilitate the representation learning; 2) Com-
pared with previous supervised contrastive learning
method (CE+SCL), LaCon-fusion can still obtain
very exciting improvements of 3.1%, 2.1%, 1.7%,
1.2% points on RTE, Tnews, YelpRev, QQP, which
demonstrates the label fusion block can enhance the
instance representations effectively; 3) Compared
to previous label embedding methods (LEAM and
LSAN) which are also equipped with the label fu-
sion block, LaCon-fusion outperforms them with a
large margin, which proves that LaCon can learn
more discriminative joint representations for both
labels and instances.

3.4 Ablation Study

In this section, we conduct three groups of ablation
studies to investigate the contribution of each com-
ponent in LaCon. We only conduct experiments
on MRPC, RTE, and CoLA datasets due to space
limitation. The experimental results are shown in
Table 3. First, we replace the multi-head ICL with
single head version (LaCon w/ LICL). Table 3
shows the performance drops on all three datasets.
We conjecture that the multi-head version can learn
different parts of the local features of the repre-
sentation, which can catch the text semantics in

more fine-grained granularity. Second, we remove
each of our proposed CL loss separately, and the
results in the second part of Table 3 demonstrate
that ICL plays a more important role while LCL
and LER are complementary to further improve
the performance. We also try to add each CL loss
in an accumulative way, please refer to Appendix
A.1 for more details. Finally, we try to remove the
projection head g from LaCon and the performance
degrades significantly, which indicates g is critical
in CL. Previous researches (Chen et al., 2020c) also
find the projector head can eliminate the non-task
relevant features of the encoder in CL and benefit
the downstream tasks. Meanwhile, Table 3 shows
that it is basically useless by adding g to BERT
directly (BERT w/ g), indicating that the projector
head needs to be used with CL.

Methods MRPC RTE CoLA
LaCon-vanilla 87.5±0.8 71.4±0.7 62.4±1.1

LaCon w/ LICL 87.0±1.2 69.2±1.4 61.5±0.9

−L
′
ICL 86.6±1.3 68.1±0.9 61.3±0.7

−LLCL 87.1±0.6 70.5±0.8 61.2±1.1
−LLER 87.3±1.1 70.2±1.3 62.2±1.6

−g 86.8±0.6 69.6±0.6 62.2±0.9
BERT w/ g 84.9±1.7 66.5±2.1 61.0±1.2

Table 3: Ablation study. Best scores for each dataset are
highlight in bold (all with significance test p < 0.05).

4 Discussion

In this section, we conduct further experiments un-
der more challenging few-shot and data imbalance
settings. We also discuss the hyper-parameter tun-
ing and the impact of class number on LaCon.

4.1 LaCon for Few-shot Learning

Few-shot learning is critical for applications of
language understanding models because the high-
quality human annotated datasets are usually costly
and limited. Previous researches (Liang et al.,
2021; Gunel et al., 2021; Aghajanyan et al., 2021)
find that fine-tuning PtLM with cross entropy loss



in NLP tends to be unstable across different runs es-
pecially when supervised data is limited. This limi-
tation can result in model degeneration and model
shift. Besides, some researches (Müller et al., 2019)
also demonstrate that the cross-entropy optimiza-
tion goal is not reachable due to the bounding of the
gradient, which can also easily result in overfitting.
Since LaCon is equipped by CL, it’s interesting to
validate if LaCon can overcome the shortcomings
of CE under few-shot learning settings.

Model YelpRev Tnews EPRSTMT BUSTM
CE 59.0 52.5 84.4 65.6

LaCon 65.0 55.8 90.6 75.0
Model QNLI RTE MRPC QQP

CE 73.0 54.0 65.8 64.0
LaCon 76.0 60.0 69.0 71.0

Table 4: Performance under few-shot learning settings.

We conduct further experiments with vanilla La-
Con on 5 public English datasets from FewGLUE
(Schick and Schütze, 2021) and 3 public Chinese
datasets (Tnews, EPRSTMT and BUSTM) from
FewCLUE (Xu et al., 2021). We build all the few-
shot learning datasets by sampling 20 samples for
each class to form training set. We also held out the
same amount of samples for validation set but keep
the whole test set unchanged. We train the model
for 20 epochs and select the best model based on
validation set. Table 4 shows that LaCon signifi-
cantly outperforms the BERT-base fine-tuned with
CE loss with a huge margin. Specifically, we ob-
serve 9.4%, 7%, and 6.2% absolute improvement
on BUSTM, QQP, and EPRSTMT.

Additionally, we also conduct more strict experi-
ments by changing the number of samples per class
from {10, 20, 50, 100}. Figure 2 demonstrates that
the smaller the sample size per class is, the larger
gain the model obtains. All above results indicate
that the similarity-based CL losses in LaCon are
able to hone in on the important dimensions of
the multidimensional hidden representations hence
lead to better and more stable few-shot learning
results when fine-tuning PtLM.

4.2 LaCon for Data Imbalance Setting
The real-world datasets are usually imbalanced for
different classes (Cao et al., 2019; Bao et al., 2020),
where several dominant classes contain most of the
samples while the rest minority classes only hold
a handful of samples. In this section, we conduct
experiments to validate the capacity of LaCon un-
der data imbalance setting. We follow the previous

(a) QQP (b) RTE

Figure 2: Few-shot learning with different number of
training samples.

research (Cao et al., 2019) to construct imbalanced
classification training datasets with different imbal-
ance degree (ρ = |classmax|/|classmin|, where
|classmax| / |classmin| denotes number of samples
in maximum / minimum class). For space limita-
tion, we conduct experiments with vanilla LaCon
on QNLI and CoLA. The minority class contains
32 samples and the majority class contains 32× ρ
in our experiments. As shown in Figure 3, we vary
the imbalance degree (ρ) from {1, 3, 5, 10, 20} and
observe that LaCon outperforms BERT with CE
consistently, demonstrating that LaCon also has
advantage on the data imbalance setting.

(a) QNLI (b) CoLA

Figure 3: LaCon with Different Imbalance Degree (ρ).

QNLI CoLA
Methods minor major minor major

CE 43.4 71.8 2.3 81.3
LaCon 56.1 74.0 12.9 82.2

Table 5: F1 score for both majority and minority classes.
Due to space limitation, we show results of ρ = 10.

We argue that LaCon may alleviate data im-
balance issue on two aspects: 1) For the infre-
quent classes, treating labels as anchor or posi-
tive/negative may mitigate the data insufficient is-
sue to some extent. 2) Label representations are
shared across the whole dataset during training,
which may transfer the knowledge from frequent
classes to infrequent classes. To validate above
conjecture, we present the performance on the test
sets for majority and minority classes separately.



Table 5 shows that LaCon outperforms the baseline
on both majority and minority classes and the gain
on minority class is much larger.

4.3 Visualization
To demonstrate the effectiveness of LaCon on rep-
resentation learning, we visualize the learned in-
stance representations of LaCon and CE on the
MRPC and CoLA dataset. In Figure 4, we use
t-SNE (Van der Maaten and Hinton, 2008) to vi-
sualize both the high dimensional representations
of the instances and labels on a 2D map. Different
classes are depicted by different colors. As shown
in Figure 4 (a), the instances of class A and class
B are sparsely located and overlapped in a large
area, making it hard to find a hyper-plane to sepa-
rate them. However, in Figure 4 (b), the instances
gather into two compact clusters and the instances
stay close to the corresponding class. For CoLA,
Figure 4 (c) and (d) show the similar trends. It
indicates that LaCon can learn more discriminative
instance representations than CE. Besides, in Fig-
ure 4 (b), the instances are near the corresponding
label anchor, proving that LaCon can also learn a
representative label embedding for each class.

4.4 Hyper-parameter Tuning
In this section, we take the RTE dataset as an ex-
ample for illustrating the hyper-parameter tuning
process. The similar hyper-parameter tuning strat-
egy is applied for other datasets. The tuning scripts
will be released in our source code. Figure 5 shows
the influence of different hyper-parameters.

For each experiment, we conduct a grid-based
hyper-parameter sweep for τ between 0.05 and 0.5
with step 0.05, λ between 0.1 and 1.0 with step
0.1, and select the best hyper-parameter for the
given dataset. The τ is the most influential hyper-
parameter that needs to be tuned carefully with
minimum step 0.05. Larger τ results in lower ac-
curacy in LaCon and the recommended value is
around 0.1 and 0.2. Figure 5 (b) illustrates that
the optimal number of heads in Equation 4 is 6
and both the most and fewest heads result in low
accuracy while heads with middle sizes get rel-
atively better accuracy scores. Small number of
head shows little diversity in feature clipping while
larger one results in very short vectors with poor
representation capacity. The label embedding regu-
larizer weight λ in Figure 5(c) can be set in a wide
range, where either without LLER or large λ will
result in poor performance.

(a) CE (b) LaCon

(c) CE (d) LaCon

Figure 4: Visualization of label and instance representa-
tions for MRPC (a&b) and CoLA (c&d) using T-SNE.

4.5 The Impact of Class Number

As the number of classes influence the difficulty
of classification task directly, in this section, we
discuss the impact of class number on our proposed
model LaCon. We pick the DBPedia dataset for
experiment. The original DBPedia dataset includes
14 labels. We gradually increase the label number
from 2 to 14 and randomly select 1000 samples
for each label in our experiment as training set.
Meanwhile, we keep the whole samples for the
chosen labels in the evaluation set unchanged. Fig-
ure 6 demonstrates that with the increase of the
labels, the performance of all models degrades as
the task becomes more difficult. However, LaCon-
fusion outperforms CE+SCL consistently on differ-
ent number of labels, which shows the advantage
of leveraging labels as anchors or positive/negative
samples during contrastive learning.

5 Related Work

5.1 Contrastive Learning

Contrastive Learning has become a rising domain
and achieved significant success in various CV,
speech and NLP tasks (He et al., 2019; Chen et al.,
2020b; Fang and Xie, 2020; Han et al., 2021; Saeed
et al., 2021; Gunel et al., 2021; Gao et al., 2021;
Yan et al., 2021). There are two kinds of CL ap-
proaches, which are self-supervised CL and su-
pervised CL. The self-supervised CL contrasts a



(a) τ (b) heads (c) λ

Figure 5: Illustration of hyper-parameters tuning (RTE is taken for example and other datasets are similar).

Figure 6: The impact of class number on LaCon. Exper-
iments were conducted on DBPedia.

single positive for each anchor (i.e., an augmented
version of the same image) against a set of nega-
tives consisting of the entire remainder of the batch.
However, due to the intrinsic discrete nature of
natural language, data augmentations are less effec-
tive than that in CV. Recently, researchers (Khosla
et al., 2020; Gunel et al., 2021) propose supervised
CL, which contrasts the set of all samples from
the same class as positives against the negatives
from the remainder of the batch. Suresh and Ong
(2021) propose label-aware SCL method via assign-
ing weights to instances of different labels, which
treats the negative samples differently.

LaCon belongs to the scope of supervised CL.
Different from (Khosla et al., 2020; Gunel et al.,
2021), LaCon can take the labels as anchors or
mine negative/positive from labels, which does not
need to construct positive pairs from the data aug-
mentation. Meanwhile, Gunel et al. (2021) com-
bine CL and CE losses at the same time, but LaCon
is purely equipped with three CL objectives, in-
cluding the instance-centered contrastive loss, the
label-centered contrastive loss and the label embed-
ding regularizer.

5.2 Label Representation Learning

Label representation learning aims to learn the em-
beddings of labels in classification tasks and has

been proven to be effective in various CV (Frome
et al., 2013; Akata et al., 2016) and NLP tasks
(Tang et al., 2015; Pappas and Henderson, 2019;
Nam et al., 2016; Zhang et al., 2018; Wang et al.,
2018; Xiao et al., 2019; Miyazaki et al., 2020). In
this work, we compare with two representative la-
bel embedding based models, which are LEAM
(Wang et al., 2018) and LSAN (Xiao et al., 2019).
Both learn label embeddings and sentence repre-
sentations in a joint space based on attention mech-
anism and fuse them to improve the classification.
Differently, LaCon learns the label and instance
representations jointly via purely supervised con-
trastive learning. Besides, our experiments also ver-
ify that after obtaining the discriminative label and
instance representations, even simple fusion block
can facilitate the language understanding tasks.

6 Conclusions

In this paper, we proposed a novel supervised con-
trastive learning approach for language understand-
ing. To utilize the class labels sufficiently, we de-
vise three novel contrastive objectives, including
a multi-head instance-centered contrastive loss, a
label-centered contrastive loss, and a label embed-
ding regularizer. Extensive experiments were con-
ducted on eight public datasets from GLUE and
CLUE benchmarks, showing the competitiveness
of LaCon against various strong baselines. Besides,
we also demonstrate the strong capacity of LaCon
on more challenging few-shot and data imbalance
settings, which leads up to 9.4% improvement on
the FewGLUE and FewCLUE benchmarks. LaCon
does not require any complicated network archi-
tecture or any extra data augmentation, and can
be easily plugged into mainstream pre-trained lan-
guage models. In the future, we will explore more
advanced representation fusion approaches to en-
hance the capability of LaCon and plan to extend
LaCon to the computer vision and speech fields.
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A Appendix

A.1 Accumulative Ablation Study

In this section, we supplement more ablation results
by adding each proposed CL loss cumulatively. We
conduct experiments on MRPC, RTE, and CoLA
datasets and keep the setting consistent with Sec-
tion 3.4. Table 6 demonstrates that the contribution
of each component in more details.

A.2 Experimental Results of More Datasets

We supplement more experimental results on the re-
maining datasets of GLUE and CLUE benchmarks.

Methods MRPC RTE CoLA
LICL 86.2±1.5 67.8±1.1 61.2±0.9

L
′
ICL 86.9±1.1 68.2±0.7 61.2±1.5

LLCL 87.0±1.7 68.3±1.0 61.1±1.3

L
′
ICL + LLCL 87.3±1.1 70.2±1.3 62.2±1.6

L
′
ICL + LLER 87.1±0.6 70.5±0.8 61.2±1.1

LaCon-vanilla 87.5±0.8 71.4±0.7 62.4±1.1

Table 6: Ablation study via adding losses cumulatively.

We follow the same experimental setup with Sec-
tion 3.1. Please note that SST-B is a regression
task that is beyond the capacity of the proposed La-
Con. The official CLUE benchmark has replaced
CMNLI with OCNLI dataset, and the CSL dataset
is a keyword recognition task, which is not suitable
for our proposed model. Thus, we omit the experi-
ments on above three datasets and report the perfor-
mance on the remaining language understanding
tasks including SST-2, MNLI, AFQMC, OCNLI
and IFLYTEK.

Table 7 shows that, LaCon-vanilla consistently
outperforms BERT fine-tuned with CE, and LaCon-
fusion still beats the baselines among all datasets,
which further demonstrates the superiority of our
proposed method.

A.3 Theoretical Analysis

In this section, we conduct the theoretical analysis
to prove the rationality and necessity of our pro-
posed ICL and LCL losses. We also explain why
these two losses are complementary. Finally, we
analyze the computational efficiency of ICL and
LCL compared to InfoNCE (van den Oord et al.,
2018) and SCL (Khosla et al., 2020).

The recent researches (Li et al., 2020; Gao et al.,
2019) reveal that the anisotropy problem of pre-
trained language models, which shows that the
learnt embeddings occupy a narrow cone in the
dense vector space, harming the uniformity of the
models and limiting the representation capacity.
The singular values of the contextual embeddings
decay drastically with most of them nearly zeros
(Wang and Isola, 2020). CL is proposed to elimi-
nate the long-tail distribution problem of singular
values, aiming to enhance the representation ca-
pacity (Gao et al., 2021; Yan et al., 2021; Gunel
et al., 2021). From the spectrum perspective (Wang
et al., 2020; Wang and Isola, 2020) that analyzes
the distribution and uniformity of the learned em-
bedding space, CL flattens singular values of the
embeddings thus improves the capacity of language



Methods SST-2 MNLI AFQMC OCNLI IFLYTEK
Baseline* 91.4±0.3 73.1±0.3 74.5±0.3 68.3±0.7 61.5±0.5

CE 91.2±0.1 72.5±0.3 70.9±0.5 66.8±0.4 60.6±0.2
LaCon-vanilla 91.4±0.3 73.3±0.4 72.5±0.3 67.4±0.3 60.9±0.2
LaCon-fusion 92.5±0.2 73.9±0.3 74.8±0.5 69.1±0.6 63.5±0.7

Table 7: Performance on the remaining datasets of GLUE and CLUE. Baseline* means the best performance of our
baselines. The evaluation metrics are the same as the official GLUE (Wang et al., 2019) and CLUE (Xu et al., 2020)
benchmarks (all with significance value p < 0.05).

models.

LICL = −1

τ
E(x,y)∼A(y)(HxLy)

+Ex∼A(y)[logEy− /∈A(y)(e
HxLy−/τ )]

(10)

Ex∼A(y)[logEy− /∈A(y)(e
HxLy−/τ )]

=
1

N

i=N∑
i=1

log(
1

C − 1

1≤j≤C∑
j ̸=i

eHxiLyj /τ )

≥ 1

N(C − 1)τ

i=N∑
i=1

j=C∑
j=1,j ̸=i

HxLy−

(11)

Therefore, we can form an asymptotic equivalent
objective of the LICL (Equation 3) as Equation 10.
(x, y) ∼ A(y) denotes instances (i.e. x) with corre-
sponding label (i.e. y) and y− denotes the label that
is different from y. The first item keeps instances
and corresponding labels similar and the second
item pushes the mismatched instances and labels
apart. We can further derive Equation 11 using
Jensen’s inequality because e(.) is convex. There-
fore, minimizing the LICL equals to minimization
of summation of all elements in HLT ∈ RN×C .
Because both H and L are normalized, tr(HTL)
is a constant due to all diagonal elements are ones.
sum(HLT ) is an upper bound of the largest sin-
gular value (Merikoski, 1984) and minimization
of the sum(HLT ) will flatten the singular values
distribution of HLT . As the HLT is a non-squared
matrix, we need to optimize both the left and right
singular values using HLT and LHT in order to ef-
fectively eliminate the anisotropy and promote the
uniformity of pre-trained language models in classi-
fication tasks to enhance the model capacity. Thus,
we also need to optimize the label-centered con-
trastive loss LLCL at the same time. From above
analysis, we can see that LICL and LLCL are com-
plementary to each other. Similarly, we can derive
that minimizing LLCL results in the minimization
of sum(LHT ) ∈ RC×N .

Although both ICL and LCL calculate the N×C
similarity scores for a mini-batch, they are differ-
ent. The ICL is the average of the instance-level per
sample loss while the LCL is the per label loss. The
ICL intends to align each instance to correspond-
ing label correctly. The LCL makes the instances
of different labels far away from each other and
instances of the same label more compact. They
consider different aspects of instance and label rep-
resentation through operating the N ×C similarity
scores differently according to Equation 3 and 5.

Compared to InfoNCE, ICL improves the com-
putational efficiency from O(N2) to O(NC) be-
cause we only need to contrast the instance repre-
sentation with corresponding label representations
for per example loss, which is extremely useful for
language understanding tasks (Wang et al., 2019;
Xu et al., 2020) that commonly consist of 2 or 3 la-
bels. Similarly, LCL is also more computationally
efficient as it only contrasts one label representa-
tion to several instances rather than computes all
pairs of instances belonging to a given label in the
mini-batch. Thus it improves the complexity from
O(N2) to O(CN) compared with SCL too.
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