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Abstract—Supplementing product attribute information is a
critical step for E-commerce platforms, which further benefits
various downstream tasks, including product recommendation,
product search, and product knowledge graph construction.
Intuitively, the visual information available on e-commerce
platforms can effectively function as a primary source for certain
product attributes. However, existing works either extract attribute
values solely from textual product descriptions or leverage limited
visual information (e.g., image features or optical character
recognition tokens) to assist extraction, without mining the fine-
grained visual cues linked with the products effectively. In this
paper, we propose a novel task - Multimodal Joint Slot Filling
(MuJo-SF) - that aims to combine multimodal information from
both product descriptions and their corresponding product images
to jointly fill values into the pre-defined product attribute set. To
this end, we develop MAVP, a new dataset with 79k instances of
product description-image pairs. Specifically, we present a strategy
to fulfill visualized saliency ascription, which aims to distinguish
between text-dependent and image-dependent attributes. For those
image-dependent attributes, we annotate the corresponding values
from images using distant supervision. Then, we design a model
for MuJo-SF, which combines multimodal representations and fills
image-dependent and text-dependent attributes separately. Finally,
we conduct extensive experiments on MAVP and provide rich
results for MuJo-SF, which can be used as baselines to facilitate
future research.

Index Terms—Attribute value prediction, multimodal joint slot
filling, distant supervision, e-commerce commodity

I. INTRODUCTION

AS customers navigate the e-commerce product pages to
make product selections, they partake in a multimodal

experience, perusing through both product descriptions and
images. In this context, customers have the ability to extract
attribute values from these multimodal product sources. These
attribute values play a pivotal role in assisting customers to
identify products that align with their requirements and facilitate
their purchasing choices.
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Fig. 1: A comparison of multimodal information extraction (a)
in social media scenario (b) in e-commerce scenario.

Most existing methods acquire product attribute values in
a text-only landscape, which extract information from the
product title and descriptions [1]–[5]. However, product images
available on e-commerce platforms can provide substantial
contribution in product attribute extraction. For instance, during
the process of browsing an e-commerce webpage and seeking
a black short-sleeve shirt, presenting the product image can
yield instantaneous results as opposed to sifting through
numerous pages of product descriptions with the expectation
of encountering attributes like color and sleeve length, which
the retailer may or may not have included on the product
page. Some other methods focus on multimodal attribute value
extraction, but they either use image features to supplement
textual information [6]–[8] or use optical character recognition
(OCR) technology to capture text in the image and correct
the words in the product description [9], [10], lacking of fine-
grained analysis and mining for product images, and attribute
value extraction is inclined to rely on textual information flow.

Figure 1 illustrates the difference in multimodal information
extraction between e-commerce and social media platforms. For
example, in a social media scenario like Twitter, some named
entities of pre-defined types need to be mined (such as persons,
locations, organizations and miscellaneous). Images are usually
used as auxiliary information of text to alleviate ambiguity in
natural languages. As shown in Figure 1(a), the region with
the goldfish in the image can be used to assist in recognizing
“Lupin” in the Tweet as miscellaneous rather than persons. But,
the goldfish’s name, “Lupin”, cannot be directly obtained from
the image. However, in an e-commerce scenario, the product
attribute values that need to be mined are typically generic
product information. Images should not be merely employed
as supplementary information to text; rather, they constitute
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the principal source for certain attribute values. As shown in
Figure 1(b), the product description includes the value “Summer”
corresponding to attribute Season, as well as the value “Plant”
corresponding to attribute Pattern. However, we can easily
access additional product attribute values by paying attention
to the product image, such as value “V-shape” corresponding to
attribute Neckline, value “Sleeveless” corresponding to attribute
Sleeve length.

In this paper, we propose a novel task named Multimodal
Joint Slot Filling for Attribute Value Prediction of E-commerce
Commodities (MuJo-SF), which differs from traditional infor-
mation extraction systems. In MuJo-SF, the visual information
available on e-commerce platforms can serve as a primary
source for certain product attributes. Attribute slots for each
product category on e-commerce platforms are predefined, and
models are required to simultaneously populate all these slots.
This necessitates the utilization of information streams from
both textual and visual modalities in a collaborative manner.
This new paradigm contains three advantages: (1) It simulates
human intuition when browsing e-commerce pages and can
fully take advantage of different data resources on e-commerce
platforms. (2) Models are relieved from predicting the product’s
attribute types in advance. (3) Models are expected to accurately
and completely fill product slots across all categories, which
involves not only predicting attribute values within the same
category but also distinguishing attributes across different
categories.

To address MuJo-SF, we contribute a new Multimodal
Attribute Value Prediction dataset (MAVP) consisting of 79k
product description-image instances and 25 slots across 5
domains. We first design a visualized saliency ascription
strategy to conduct a fine-grained analysis on images, thereby
determining which attributes can be directly and easily extracted
from the images. Specifically, we mask out the token in the
product description that corresponds to the value and then
predict this masked token using both textual and multimodal
information separately. Based on the ascription results, we
categorize all attribute slots into either text-dependent or
image-dependent attribute slots. Subsequently, for the image-
dependent attributes, we annotate their corresponding values
within product images using the multi-dataset associative distant
supervision approach.

We develop a new training paradigm for the new task MuJo-
SF, which distinguishes between text-dependent and image-
dependent modules. After encoding text and images with their
respective encoders, we use a cross-modal interaction module
to merge the information flows from different modalities.
During the training process, we adopt a joint training strategy
to simultaneously optimize both text-dependent and image-
dependent modules. By fusing image and text information
before dividing into sub-modules for joint training, the model
benefits from an integrated multimodal context while allowing
each sub-module to specialize in its respective domain. This
process enhances the model’s ability to extract and utilize
the unique features of each modality, leading to a richer and
more accurate performance. We conduct extensive experiments
on MAVP and achieves promising results on two evaluation
metrics.

In summary, MuJo-SF merges multimodal data to produce
richer attribute information, thereby presenting a more de-
tailed product view. This richer attribute information can
refine search and filtering capabilities, which guides users
to their ideal products and support more informed purchase
decisions. Simultaneously, automating the process of filling
in attribute values from multiple sources can significantly
reduce the need for manual intervention and increase efficiency.
The dataset and baseline model are publicly available at
https://github.com/jmhz24/MuJo-SF.

The contribution of this paper is three-fold:
• We introduce MuJo-SF, a novel task that is required to

utilize information streams from both textual and visual
modalities in a collaborative manner to fill all pre-defined
product attribute sets. This task simulates human browsing
habits on e-commerce platforms.

• We contribute MAVP, a new dataset consisting of 79k
product description-image pairs and 25 slots across 5
domains. We design a visualized saliency ascription
strategy to distinguish between text-dependent and image-
dependent attribute slots and annotate image-dependent
attributes in images via multi-dataset associative distant
supervision.

• We develop a new training paradigm for the novel task
MuJo-SF, which distinguishes between text-dependent
and image-dependent modules. Benchmarking the MAVP
dataset with this paradigm, which would serve as a
strong baseline, our empirical results show its potential
to stimulate future research in the field of multimodal
e-commerce product attribute value prediction.

II. RELATED WORK

A. Attribute Value Extraction

Attribute Value Extraction (AVE) is a subtask within the
broader domain of information extraction in Natural Language
Processing (NLP) [11]–[14] that focuses on identifying and
extracting specific attributes and their corresponding values
from unstructured text. Existing methods on AVE mainly
fall into two categories. One is the sequence labeling based
approach, which defines a label sequence for each product
description with the BIO tagging schema [15] and predicts
the correct label for each token in the input sequence [16]–
[19]. OpenTag [1] proposes a BiLSTM-SelfAttention-CRF
architecture to fulfill the MAVE task, which does not use
any dictionary or hand-crafted features. [2] adopts one set of
BIO tags for any attribute to solve the model explosion and
explicitly model semantic representations between attributes
and titles using the attention mechanism. AdaTag [3] proposes
a multi-attribute value extraction model with an adaptive CRF-
based decoder to promote knowledge sharing across multiple
attributes. TXtract [4] proposes a taxonomy-aware knowledge
extraction model and jointly extracts attribute values and
predicts the product’s categories using a multi-task learning
strategy. The other mainstream method is to formulate many
NLP tasks into the question answering framework, such as
named entity recognition [20]–[22], entity relation extraction
[23], and sentiment analysis [24]. AVEQA [5] extracts attribute

https://github.com/jmhz24/MuJo-SF
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values via question answering, in which a distilled masked
language model is proposed to enhance generalization and
a classifier with no-answer capability is developed to deal
with the no-answer case. MAVEQA [25] also formulates the
attribute value extraction task as a question answering problem,
but this work emphasizes efficient modeling of products with
structured and long profiles.

Compared with the task of text-based attribute value extrac-
tion, our MuJo-SF task, which combines data from multiple
modalities, leads to a richer set of product attributes and reduces
the potential for inaccuracies that can arise from relying on a
single data source.

B. Multimodal Attribute Value Extraction

Multimodal approaches, integrating information from diverse
modalities, have drawn substantial interest in the research
community [26]–[30]. The Internet encompasses a variety of
information sources, such as text, images and videos, providing
crucial support for multimodal research [31]–[34]. E-commerce
platforms boast abundant product images, thus making the
integration of visual information into attribute value extraction
is logical. M-JAVE [7] jointly models the attribute prediction
and value extraction tasks towards the interactions between
attributes and values and extracts values from textual product
descriptions with the help of auxiliary product images. PAM [9]
and SMARTAVE [10] use optical character recognition (OCR)
technology to capture text in the image and correct the words in
the product description. The former utilizes a transformer-based
sequence-to-sequence model to merge product descriptions,
OCR tokens, and visual objects in the product image. The
latter designs a structured attention mechanism among hyper-
tokens and local-tokens to learn valid product representations.
However, above methods treat images as supplementary, aiding
in the extraction of attribute values that are derived solely from
the text information stream. In contrast, our task involves a
multimodal attribute value joint filling process that requires
information to be extracted separately from both text and
image streams before jointly filling the attribute set. MAE [6]
and EKE-MMRC [8] employ a generative approach to obtain
attribute values. The former jointly embeds the query, text, and
images into a common latent space, combines these embedded
vectors using a fusion module and produces the final value
prediction via a value decoder. The latter extracts e-commerce
knowledge via machine reading comprehension, which encodes
questions with multi-modal descriptions as a fusion vector and
generates an answer from the fusion vector. However, both
works encode information flows from different modalities and
fuse them into a fusion vector, which is then fed into the
decoder. Different from these two papers, our paper highlights
the importance of images. We perform a fine-grained analysis
of visual information and enhance the model’s capability in
directly extracting image-dependent attributes, such as color
and sleeve length, from images.

The multimodal attribute values not only summarize product
information to facilitate product searches for customers but
also provide fine-grained information for vision-language pre-
training models designed for e-commerce contexts. FashionSAP

[35] and FashionViL [36] both focus on fashion-focused vision-
language pre-training model on e-commerce platforms. The
former proposes a fine-grained vision-language pre-training
model based on fashion symbols and attributes prompt. The
latter proposes a novel vision-language representation learning
framework that includes two innovative fashion-specific pre-
training tasks: a multi-view contrastive learning task and a
pseudo-attributes classification task.

III. MULTIMODAL JOINT SLOT FILLING

A. Task Definition

In this section, we define the new task MuJo-SF. Specifi-
cally, we use P = {p1, p2, . . . , pN} to represent a product
category set containing N product categories, and X =
{(D1, I1) , (D2, I2) , . . . , (DM , IM )} to denote a set of multi-
modal product sources on the e-commerce platform, where DM

and IM denote M product descriptions and images, respectively.
We pre-define a set of attribute slots Si = {s1, s2, . . . , sfi}
for each product category in P , where Si denotes the attribute
slot set for product category pi, fi denotes the number of
slots of pi. Common attribute slots are identifiable across
diverse product categories, alongside distinct attribute slots
that are specific to individual categories. For example, product
categories “Clothes” and “Pants” have common attribute slots
Color, Material, Season and so on, and they also have unique
attribute slots Sleeve Length and Pant Length, respectively.
Thus we merge these common attribute slots and provide a set
of attribute slots S = {s1, s2, . . . , sF } for all products, where
F indicates the number of slots for all product categories.
Each product attribute slot corresponds to a set of values, so
we define a value set V = {V1, V2, . . . , VF } in which each
element is a value candidate set corresponding to the slot. For
example, Vi =

{
vi1, v

i
2, . . . , v

i
mi

}
denotes the set corresponding

to slot si, which consists of mi value candidates. The goal of
MuJo-SF is to jointly fill all attribute slots in S via combining
multimodal product descriptions and images. Note that if a slot
is not mentioned in the multimodal product source, its value
will be annotated as “none”.

B. Data Collection

Innovative research in the e-commerce domain benefits
from the construction of diverse data resources within these
platforms, among which are datasets specifically designed
to facilitate the improvement of attribute value extraction
[2], [3], [6], [7], [25], [37], [38]. However, to facilitate the
research of multimodal joint slot filling, we develop a new
multimodal attribute value prediction dataset (named MAVP)
which is annotated and re-constructed based on the dataset
MEPAVE [7]. MEPAVE is built for multimodal attribute value
extraction (MAVE), and the instances in it are collected from
a mainstream Chinese e-commerce platform1, which consists
of textual product descriptions and product images. We first
re-construct MEPAVE to initialize our new dataset MAVP. We
select 5 product categories from the fashion domain and 25
product attributes from MEPAVE, which are Clothes, Pants,

1https://www.jd.com/
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Fig. 2: Process of visualized saliency ascription (Result-T and
Result-M denote the result of masked value prediction on
textual and multimodal information, respectively).

Dresses, Shoes, and Boots. We design 25 slots corresponding
to product attributes. In MEPAVE, all attribute annotations
are covered in the product descriptions, product images are
usually used as auxiliary information, and there is a lack of
annotations involved in them. Next, we devise a strategy for
visualized saliency ascription to analyze product images in
MEPAVE, subsequently identifying which attributes can be
seamlessly and directly extracted from the images. Then we
annotate these attributes by using a multi-dataset associative
distant supervision approach. Finally, our dataset MAVP can be
updated by combining annotations from product descriptions in
MEPAVE with the annotations obtained from product images
based on ascription strategy. Additionally, we further analyze
the quality of annotations with the distant supervision method.

1) Visualized Saliency Ascription: As mentioned in the
introduction, it is effortless to acquire visualized information
like sleeve length and color from product images, while it is
challenging to obtain details such as size and elasticity from the
images. With the above intuitions, one question arises: Can we
estimate visualized information quantitatively? For the question,
inspired by [39], we introduce a new concept visualized saliency
ascription, which can explicitly quantify the contribution of
the product image to MuJo-SF. Specifically, there is a set
of labeled product descriptions and unlabeled images. We
intend to explore the visualized saliency by predicting the
values that are annotated in product descriptions with textual
and multimodal information, respectively. Next, we depict the
visualized saliency ascription strategy, which consists of three
steps: (1) Masked value prediction on textual information, (2)
Masked value prediction on multimodal information, and (3)
Visualized saliency estimation.
Masked Value Prediction on Textual Information. We
first denote a product description with k words D =
{w1, w2, . . . , wk} which contains the value, vi ∈ D (for
clarity, we remove the subscript of D). We assume the value’s
token is wi. Inspired by the method of “masked language

���

��

�

�

��

��

��

��

��

��

Styl
e

Neck
lin

e

Patt
ern

Mate
ria

l
Craf

t
Colo

r

Clot
he

s S
ha

pe

Slee
ve

 Len
gth

Seas
on

Toe
cap

Clos
ure

Pan
t S

ha
pe

Heel
 H

eig
ht

Upp
er 

Heig
ht

Thic
kn

ess

Skir
t L

en
gth

Slee
ve

 Typ
e

Boo
t H

eig
ht

Wais
t T

yp
e

Pan
t L

en
gth

Poc
ke

t T
yp

e Fit

Poc
ke

t D
ep

th

Elas
tic

ity

Hem
lin

e T
yp

e

Sa
lie

nc
y 

(%
)

Fig. 3: Illustration of visualized saliency ascription on all slots
where the visualized saliency score of one attribute slot can
quantify its contribution to our MuJo-SF (Slots without the
blue column indicate that the difference is 0).

modeling” (MLM) [40], we replace the value’s token wi in
the product description D with a placeholder [MASK] and
adopt the self-supervision method to predict the [MASK] value.
Specifically, we employ the pre-trained BERT model [40] as
encoder, and feed an input through BERT by concatenating
{ [CLS], w1, w2, . . . , [MASK], . . . , wk[SEP]} , where [CLS]
and [SEP] are special tokens. The output of BERT is a
contextual representation matrix H ∈ R(k+2)×dt . We use
hT
w ∈ Rdt to denote the representation of the specific [MASK]

token. The masked token is fed into an output softmax over all
values and the probability is PT

w ∈ R1×Z , where Z represents
the number of all values. At last, the value’s token wi is
predicted via minimizing the cross-entropy loss function.
Masked Value Prediction on Multimodal Information. In
this section, we will combine the product description and
the product image to predict the masked value’s token wi

in the product description D. Specifically, we use Faster
R-CNN in conjunction with the ResNet-101 [41] to detect
objects of the product image and get a set of image features
U = {u1,u2, . . . ,ul} [42], U ∈ Rl×dU where l denotes the
number of objects. Next, after receiving the masked token’s
representation hT

w and image features U, we use a linear
projection to map them to the same dimension d and fuse the
textual and visual representations via calculating the attention
scores between hT

w and U:

α = softmax

(
(UWU )(h

T
wW

T
w)√

dh

)
(1)

U
′
=

l∑
q=1

αq ∗ uq (2)

hM
w = (hT

wW
T
w) ∗ (U

′
WU ) (3)

where WU ∈ RdU×d, WT
w ∈ Rdt×d, U

′ ∈ RdU , hM
w ∈ Rd

represents the fusion representation of the masked value’s
token and image, ∗ represents element-wise multiplication. The
multimodal representation hM

w is fed into an output softmax
over all values and the probability is PM

w ∈ R1×Z . At last, the
value’s token wi is predicted via minimizing the cross-entropy
loss function.
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Visualized Saliency Estimation. In this part, we quantitatively
estimate the visualized saliency score based on the above
prediction results PT

w and PM
w . Specifically, in Section III-A,

we define the attribute slots set S = {s1, s2, . . . , sF }, and each
attribute slot si corresponds to a value candidate set Vi. We
first count respectively the accuracy of each slot using differ-
ent information sources (textual or multimodal information)
based on value prediction results PT

w and PM
w . We define

AT =
{
aT1 , a

T
2 , . . . , a

T
F

}
and AM =

{
aM1 , aM2 , . . . , aMF

}
,

where AT and AM represent accuracy sets of textual infor-
mation and multimodal information slots, respectively. For
∀aTi ∈ AT , if wi ∈ Vi ∧ argmax

(
PT
wi

)
= Ywi

, then
aTi := aTi + 1, where Ywi

denotes the ground truth and wi

involves the value’s token corresponding to the i-th slot. The
same updated approach applies to AM . The visualized saliency
scores Saliency = {dif (s1) , . . . , dif (sF )} can be explicitly
quantified via calculating the difference between AT and AM

for attribute slots set S, where dif (si) = aMi − aTi .
The two steps of Masked Value Prediction on Textual

Information and Masked Value Prediction on Multimodal Infor-
mation are trained separately. We use Accuracy as evaluation
metrics. The Saliency is calculated on the validation set of
the MEPAVE dataset [7]. For more consistent outcomes, we
carry out three experiments with varying seeds and compute
the mean results. The results are presented in Figure 3. Based
on the results, we divide all attribute slots into an image-
dependent set Simg = {si|dif (si) ≥ λ} and a text-dependent
set Stext = {si|dif (si) < λ}. The threshold λ is empirically
determined. We assume that there are |Simg| image-dependent
slots and |Stext| text-dependent slots in all F slots. The process
of Section III-B1 is shown in the Figure 2.

2) Multi-dataset Associative Distant Supervison: In this
section, we annotate images in MEPAVE. Benefiting from the
visualized saliency ascription for image information in Section
III-B1, we annotate the attributes in the image-dependent
set Simg. In this paper, we empirically determine λ = 9
and divide the 25 attribute slots into 9 image-dependent
attribute slots and 16 text-dependent attribute slots. These 9
image-dependent attribute slots are: Neckline, Color, Sleeve
Length, Toecap, Closure, Heel Height, Upper Height, Skirt
Length, Pant Length. We propose a multi-dataset associative
distant supervision approach to annotate images in MEPAVE.
Specifically, we first select three fashion datasets that share
the same domain as MEPAVE, and then, we crawl some
images from the web to facilitate distant annotation. Attributes
possessing comparable meanings yet divergent terminologies
or linguistics are systematically standardized into distinct
expressions (e.g., mapping “Sleeveless” into “无袖”). We will
introduce these four datasets and the experiments separately.
The pre-trained image classification model, Swin-Transformer
[43], is utilized to conduct all experiments. The evaluation
metric of all experiments in this section is Accuracy. We
randomly split the data into training, validation, and test sets
in the ratio of 8:1:1 for FashionAI Attribute, UT-ZAP50K, and
Crawl Images datasets.
FashionAI Attribute [44]. This is a large-scale attribute dataset
with high-quality manual annotation. The dataset is used in a
global fashion challenge, in which only single-subject (single-

TABLE I: Statistics and results on FashionAI Attribute Dataset
(F-I denotes FashionAI Attribute Dataset, #imgs denotes the
number of images, Neck-l denotes Neckline, and R1 and R2
denote Round-1 and Round-2, respectively.).

F-I Length Design
Tasks Sleeve Pant Skirt Coat Collar Lapel Neck Neck-l

R1 #imgs 13,299 7,460 9,223 11,320 8,393 7,034 5,696 17,148
Result 91.67 90.86 92.04 88.71 89.89 92.09 89.98 89.77

R2 #imgs 17,285 14,003 12,555 14,454 9,059 8,876 8,154 16,376
Result 70.24 80.29 75.7 67.49 91.81 83.81 85.88 83.7

TABLE II: Statistics and results on UT-ZAP50K Dataset (#imgs
denotes the number of images).

UT-ZAP50K Closure Toecap HeelHeight Gender Material
#imgs(labeled) 48,637 36,874 29,969 50,000 47,260

#imgs(multi-label) 6,191 20,065 0 2,543 16,223

Result(Multi-task) 82.3
89.56 58.56 42.11 89.23 64.78

Result(Single-task) - 85.8 83.1 - 74.5

model or tiled single-piece) product images are used. The
dataset consists of 8 tasks including 4 length tasks and 4 design
tasks and the statistics of the dataset are shown in Table I. The
challenge is divided into two rounds: attribute classification
on single-model product images and attribute classification on
a combination of single-model and tiled single-piece product
images. We adopt a multi-task single-label strategy to tackle
this challenge, the results are shown in Table I. From the
results of the two stages, we select the dataset with the superior
performance as the basis for annotating the MEPAVE dataset.
For the design task, we merge the results from four fine-grained
sub-tasks. At last, we acquire 4 annotations of attribute slots:
Neckline, Sleeve Length, Skirt Length, Pant Length. We choose
this dataset as our source for distant supervision due to the high-
quality annotations, its balanced distribution, and the shared
domain with our target dataset.
UT-ZAP50K [45]. This is a dataset with 50,000 catalog shoe
images from Zappos.com2, which focuses on fine-grained
attribute comparisons. We separately count all annotated data
and the data with multiple labels for five attributes (HeelHeight,
Closure, Gender, Material, and Toecap) in the UT-ZAP50K
dataset. The data distribution and experimental results are
shown in Table II. We conduct experiments on these 5 attribute
comparison tasks in this dataset. Since this dataset consists of
single-label task (HeelHeight) and multi-label tasks (Closure,
Gender, Material, and Toecap), we first adopt the approach
of multi-label and joint training on multiple tasks, and the
accuracy is 82.3%. Then, we separately test the results of the
joint-training model on five sub-tasks. The results are shown
in line 2 of multi-task results in Table II. For tasks with
poor performance Toecap, HeelHeight, and Material, we train
single-task models for them. We choose 3 attributes with high-
performance results HeelHeight, Closure, and Toecap in the
UT-ZAP50K dataset to serve as annotations for the MEPAVE
dataset. The reason we select this dataset for distant supervision
is that the product images (shoes, boots) included in it closely
match the types and styles found within the MEPAVE dataset.

2https://www.zappos.com/
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TABLE III: Statistics and results on iFashion Dataset (#imgs
denotes the number of images).

iFashion Color Material Pattern
#imgs 395,778/8,934 489,395/8,741 264,953/8,925

#imgs(Multi-label) 188,943/4,811 76,231/1,586 11,335/269
Result(Single-label) 77.74 62.42 71.53

Result(Multi-label-Mix) 59.81 43.91 -
Result(Multi-label) 56.72 40.28 -

TABLE IV: Statistics and results on Craml Images.

Crawl Images Upper Height
The number of images 20,000

Result 91.24

iFashion [46]. This is a large-scale multi-label dataset, which
is constructed from over one million fashion images with a
label space that includes 8 groups of 228 fine-grained attributes
in total. We conduct experiments on 3 attribute classification
tasks in this dataset, which are Color, Material, Pattern. All
annotated data and the data with multiple labels for three
attributes are counted separately. The processed data statistics
and experimental results are shown in Table III. We train the
single-task model on these three tasks using single-label or
multi-label methods. Regarding the multi-label results, the
difference between ”Multi-label-Mix” and ”Multi-label” is that
the former trains the model using all single-label and multi-label
data, while the latter only uses multi-label data. We choose
attribute with superior result Color in the iFashion dataset to
serve as annotations for the MEPAVE dataset. We select this
dataset for distant supervision as its Color attribute distribution
closely aligns with our target dataset.
Crawl Images. So far, the slot Upper Height has not been
annotated. We crawl 20,000 images related to Upper Height
from the Internet and train a model with single-label data. The
result is shown in Table IV.

Overall, we annotate all 9 image-dependent attribute slots
with the distant supervision approach. We extract the annotated
attribute values covered in product descriptions in MEPAVE
as value candidates in 16 text-dependent attribute slots. We
perform post-processing on these value candidates. Specifically,
we incorporate some synonyms in value candidates to narrow
the candidate scope. If a slot is not mentioned in either product
descriptions or images, its value will be annotated as “none”.
Based on the above steps, we construct a new multimodal
attribute value prediction dataset, MAVP, which can facilitate
our new task MuJo-SF. Our dataset consists of 79k product
description-image instances. The statistics are shown in Table
V. We randomly split all the instances into a training set
with 64,468 instances, a validation set with 7,340 instances,
and a testing set with 7,312 instances. Next, we will analyze
the quality of the annotations obtained through the distant
supervision method combined with multiple datasets.

3) Quality of Distantly Supervised Annotations: Here, we
compare the distantly supervised annotations in the product
image with the manual annotations in the product description
to evaluate the accuracy of distantly supervised annotations.
The relative accuracy is presented here, as only a subset of

TABLE V: Statistics of our dataset.

Category #Product #Instance #Attribute slots
#Text-slot #Image-slot

Clothes 12,240 34,984 10 3
Pants 2,832 8,004 10 2

Dresses 4,567 12,915 9 4
Shoes 9,022 21,005 5 5
Boots 713 2,212 7 4
Total 29,374 79,120 16 9

TABLE VI: The accuracy of distantly supervised annotations
(T-S and V-S denote training set and validation set, respectively.
H-Height and U-Height denote Heel Height and Upper Height,
respectively.).

Closure Color Sleeve Length Toecap Neckline
T-S 60.97 68.21 80.65 57.83 57.82
V-S 58.53 70.58 75.56 61.54 53.45

H-Height Pant Length Skirt Length U-Height
T-S 52.09 70.11 65.28 96.39
V-S 53.82 81.43 69.23 94.33

annotated images is available for accuracy computation. The
corresponding product descriptions for this subset of images
include manually labeled attributes that match those present in
the product images. The results are shown in Table VI. We can
observe promising results in accuracy among the three attribute
slots, Upper Height, Sleeve Length, and Pant Length, while the
results for attribute slots Toecap, Neckline, and Heel Height
are disappointing. We hypothesize that the lower accuracy
might be attributed to two factors. First, the shoe images in
the UT-ZAP50K dataset are captured from a single angle,
while our dataset contains images taken from multiple angles.
Second, the fine-grained collar predictions in the FashionAI
Attribute dataset result in accuracy degradation when mapping
the consolidated annotation results to our dataset. We leave
the question of how to extract product attribute values more
accurately from multi-angle images to future research.

C. MuJo-SF Framework

In this section, we develop a new training paradigm for
our new task MuJo-SF based on our dataset MAVP, which
distinguishes between text-dependent and image-dependent
modules. Figure 4 shows the overview framework3.

1) Input Representation: First, we use BERT [40]
to encode product descriptions, text-dependent slots,
and text-dependent values, respectively. For product
descriptions D = {w1, w2, . . . , wk}, we concatenate
{[CLS], w1, w2, . . . , wk[SEP]} and encode them into hidden
representations HD, where HD ∈ Rk×dt . For text-dependent
slots and values, we encode each attribute along with its
corresponding value candidates. Specifically, for ∀sTj ∈ Stext,
we feed {[CLS], sTj , [SEP]} to another encoder BERTfixed

with fixed parameters, and obtain the hidden representation
hsj of the special token [CLS], where hsj ∈ Rdt . We employ
the same method to obtain hidden representations hv for each

3Note that our target is not to propose a sophistical model. Rather, we focus
on proposing a new task and presenting a model to benchmark our dataset.
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value candidate corresponding to the sTj slot, where v ∈ V(sTj )
and V(sTj ) denotes the value candidate set of sTj . Among them,
we assume that hvj is the ground truth value representation
corresponding to sTj . We aim to improve generalization and
prediction accuracy, especially for sparse values. Moreover,
we concatenate all text-dependent slots {s′

1, s
′

2, . . . , s
′

|Stext|}
and encode them into hidden representation h

′

sT , where
s
′

j = {[SLOTj], s
T
j } , 1 ≤ j ≤ |Stext|, [SLOTj] denotes

a special token. Then the representation h
′

sj ∈ Rdt at the
position of [SLOTj] is used as the global representation of
slot sTj .

And then, we resize the image to 224×224 pixels and obtain
its visual representation from an advanced pre-trained model
Swin-Transformer [43], the Swin-Transformer block consists
of a shifted window-based multi-head self-attention (MSA)
module, followed by a 2-layer MLP with GELU nonlinearity in
between. The visual representation is defined as Û = Swin−
Transformer (I), where Û ∈ Rdû , and dû is the dimension
of visual representation.

2) Cross-modality Interaction: This module is shown in
Figure 4. After receiving the product description representation
HD and product image representation Û, we apply a cross-
attention mechanism to fulfill the cross-modality interaction
between textual and visual representations. Specifically, we first
feed HD and Û into the linear projection layer, respectively,
and get H

′

D and Û
′
, where H

′

D ∈ Rk×dû and Û
′ ∈ Rdt . And

then, we calculate attention scores between H
′

D and Û, where
H

′

D works as the query matrix, while Û works as the key and
value matrix, and define the visual-aware textual representation
H̃D as follows:

ZD = softmax

(
H

′

DÛ⊤
√
dk

)
Û (4)

H̃D = LN(HD + ZDWD) , (5)

where LN denotes the layer normalization function [47], and
WD ∈ Rdû×dt , H̃D ∈ Rk×dt . Similarly, we can obtain the
textual-aware visual representation Ũ ∈ Rdû .

3) Text-Dependent Joint Slot Filling: In this section, we
aim to jointly fill all text-dependent slots Stext with product
descriptions. We first get the local and global representations
hsj , h

′

sj of sTj , the value and ground truth value representations
hv, hvj , and the updated textual representation H̃D from
Section III-C1 and III-C2, respectively. And then, we apply the
attention mechanism to fulfill the interaction between slot and
textual information. Specifically, we calculate attention scores
between hsj and H̃D, and between h

′

sj and H̃D, which can
obtain two text-aware slot representations h̃sj and h̃

′

sj . We
fuse them to get the unified slot representation:

h̃T
sj = LN

(
h̃sj + h̃

′

sj

)
(6)

After that, following [48], we use L2 norm to acquire the
distances between text slot representation h̃T

sj and candidate

Text-dependent Jo-SF

[CLS] P.D. [SEP][S1]      [S2] …

BERTfixed Swin-Transformer

Image-dependent Jo-SF

Cross Attention

BERT

�
Multi-classifiers (I-D slots)

Linear

Multi-classifiers (T-D slots)
T-S1 T-S2 T-S3

Linear Slot Attention1Slot Attention2

Dist Dist Dist Dist Dist

I-S1T-S4 � I-S2 I-S3
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Product Description: 2021 Summer Plant Print Dress
A: Pattern, Style, Material…
V: “Summer”, “Plant”…

Fig. 4: Overview of our MuJo-SF framework. (T-D and I-
D denote Text-dependent and Image-dependent. Dist denotes
Distance, A and V denote Attribute and Value, and T-S1 and
I-S1 denote the first slot in the text- and image-dependent,
respectively).

values of sTj . The cross-entropy loss is taken as the training
objective:

PT
slotj =

exp
(
−
∥∥∥h̃T

sj − hvj

∥∥∥
2

)
∑

v∈V(sTj ) exp
(
−
∥∥∥h̃T

sj − hv

∥∥∥
2

) (7)

LT =
1

|Stext|

|Stext|∑
j=1

CE(PT
slotj , Y

T
slotj ) (8)

where PT
slotj

∈ R|V(sTj )|, |V(sTj )| denotes the number of values
in the text slot sTj . Y T

slotj
is the ground truth label for the

value corresponding to sTj , and |Stext| is the number of text-
dependent slots.

4) Image-Dependent Joint Slot Filling: Here, we will jointly
fill all image-dependent slots Simg with visualized information
in product images. We get the updated visual representation Ũ
from Section III-C2, which is concatenated with the original
visual representation Û from Section III-C1. The result is then
fed into the classifier corresponding to different image slots.
Subsequently, we predict a value for each image slot. For image
slot sIj , we predict the value corresponding to sIj :

Ũ
′
= Wu

[
Ũ; Û

]
(9)

P I
slotj = softmax(Ũ

′
Wj) (10)

where Wu ∈ Rdû×2dû , Wj ∈ Rdû×|V(sIj )|, P I
slotj

∈ R|V(sIj )|,
|V(sIj )| denotes the number of values in the image slot sIj . The
cross-entropy loss is taken as the training objective:

LI =
1

|Simg|

|Simg|∑
j=1

CE(P I
slotj , Y

I
slotj ) (11)

where Y I
slotj

is the ground truth label for the value correspond-
ing to sIj , and |Simg| is the number of image-dependent slots.
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5) Model Ensemble: We employ a joint training method for
the model. This approach is designed to simultaneously train
both the text-dependent and image-dependent joint slot filling
components. The overall objective function is as follows:

L = λ1LT + λ2LI (12)

where λ1 and λ2 are hyper-parameters to control the contribu-
tion of each module.

IV. EXPERIMENTS

A. Experimental Setup

In this paper, we evaluate our proposed framework on our
new dataset MAVP.
Evaluation Metrics. For our MuJo-SF task, we use Joint Goal
Accuracy (JGA) and Slot Accuracy (SA) [48] as evaluation
metrics. JGA assesses the model’s ability to accurately predict
the entire set of attribute values for a product, with accuracy
determined by the correct prediction of all slots. The JGA
score is calculated as the product of indicator functions for all
slots, and the formulation is shown below:

JGA =

S∏
j=1

I (yj = ŷj) (13)

SA serves as an effective metric for assessing the model’s
performance on individual slots. The formulation of SA is
shown below:

SA =
1

S

S∑
j=1

I (yj = ŷj) (14)

Where S denotes the total number of slots to be tracked, for
text-dependent slots, the total number of slots can be denoted
as |Stext|, and for image-dependent slots, the total number of
slots can be denoted as |Simg|. yj is the true value for slot j,
ŷj is the predicted value for slot j. The indicator function I
returns 1 if the predicted value matches the true value, and 0
otherwise.

For these two metrics, JGA is stricter, which means that
it only gives credit for completely correct outputs. This
pushes models to be more precise and reduces the chance
of overestimating performance due to partial correctness. SA
provides a measure of how well the model performs on each
individual slot. This can be useful for identifying which slots
the model is handling well and which ones need improvement.
Implementation Details. We employ the pre-trained uncased
BERTbase model [40] with dimension of 768 and the pre-
trained Swin-Transformer [43] with dimension of 1024 to
get the initial representations of text tokens and images,
respectively. The image is resized to 224 × 224 pixels. For
the joint training loss, we set the hyper-parameters λ1=λ2=1
by tuning on the validation set. We employ an AdamW [49]
optimizer for 50 epochs using a cosine decay learning rate
scheduler and 20 epochs of linear warm-up. The initial learning
rate and dropout rate are set to 2e-4 and 0.3, which obtains
the best performance on the validation set after conducting a
grid search over the interval [5e-5, 5e-4] and [0.1, 0.6]. The

TABLE VII: Results of our model compared with text and
image classification baselines (T-D and I-D denote Text-
dependent and Image-dependent, bk., L-M, BT-b, Ip-v4, and
Sw-T denote backbone, LSTM, BERT-base, Inception-v4,
and Swin-Transformer, respectively.). Our model achieves a
statistically significant improvement with p-value<0.05 under
a paired two-sided t-test.

Methods
Dev Test

T-D slots I-D slots T-D slots I-D slots
JGA SA JGA SA JGA SA JGA SA

LSTM 86.04 99.29 - - 86.49 99.30 - -
BERT-base 86.97 99.31 - - 87.21 99.32 - -
Inception-v4 - - 77.62 93.40 - - 78.17 93.42
Swin-Transformer - - 80.16 93.98 - - 80.53 93.99
Our model
-bk.=L-M,Ip-v4 87.02 99.32 79.02 93.45 87.31 99.33 79.15 93.46
-bk.=BT-b,Ip-v4 87.89 99.35 79.11 93.46 88.10 99.36 79.22 93.47
-bk.=BT-b,CLIP 88.27 99.36 79.64 93.88 88.55 99.37 79.92 93.91
-bk.=BT-b,Sw-T 88.73 99.38 81.46 94.27 88.98 99.40 81.73 94.29

weight decay and warm-up are set to 0.02 and 5e-7. Moreover,
we set the batch size to 60 on one NVIDIA Tesla P40.
Baselines. Our model is compared with text baselines such as
LSTM and BERT, and image classification baselines such as
Inception-v4 [50], CLIP [51] and Swin-Transformer.

B. Main Results

Table VII shows the performance of our model compared
with text and image classification baselines on Dev and Test
sets. The results indicate that different baseline models yield
promising performance on our new task, MuJo-SF, underscoring
the effectiveness of the task and the high quality of the
dataset. Moreover, integrating advanced pre-trained models
significantly boosts the performance metrics. For instance,
transitioning from LSTM to BERT-base for text-dependent
slots, and from Inception-v4 to Swin-Transformer for image-
dependent slots, resulted in noticeable gains. These results
indicate that models enhance their ability to understand and
process complex features by utilizing more sophisticated
underlying architectures.

Meanwhile, we conduct experiments with another advanced
encoder, CLIP; however, CLIP’s results on the JGA metric are
slightly inferior to those of the Swin-Transformers. We guess
this is because CLIP is designed to link visual content with
textual descriptions and typically employs global self-attention
across the entire image. In contrast, the Swin-Transformer
focuses on traditional vision tasks and utilizes a combination
of local and limited global self-attention mechanisms. Our task
requires the extraction of information separately from text and
image streams. Furthermore, product descriptions and images
may contain varying attribute values for the same product,
requiring a focus on various image regions for effective value
extraction. Therefore, we consider the Swin-Transformer to
be the more suitable model for our purposes. Future research
could explore additional combinations of pre-trained models
and delve into transformer-based architectures for multimodal
learning.
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And then, the consistently higher scores on the Slot Accuracy
(SA) metric compared to the Joint Goal Accuracy (JGA)
across all models emphasize the difficulty of achieving perfect
predictions across all slots. While high SA scores indicate
that models can accurately predict individual slots, the JGA
metric reveals a lack of holistic understanding required to
accurately predict a full set of attribute values. These results
suggest that future research should focus on enhancing models’
capabilities to capture and correlate comprehensive contextual
information. Moreover, the challenge of achieving a high JGA
score indicates potential improvements in error analysis. For
example, future work could investigate whether errors are
systematic or random, whether they relate to specific slots or
types of data, or whether they are due to limitations in the
models’ representational power.

At last, our training mechanism achieves promising results
across different dependent types, and our method of joint train-
ing on multiple dependent types outperforms their individual
results (text-dependent or image-dependent). Future research
could involve exploring the optimal balance between types of
dependencies and extending these findings to other multimodal
tasks.

C. Ablation Study

To show the effectiveness of each module in MuJo-SF, we
conduct ablation study by removing particular component
from it. Table VIII shows the results. We can observe that
all components in our MuJo-SF contribute to the final re-
sults. First, after removing the cross-attention module, the
performance drops on all metrics, particularly on the text-
dependent type. Specifically, JGA scores on two dependent
types degrade by 1.56% and 0.96%, respectively. The results
indicate that the cross attention mechanism promotes effective
interaction between image and text. As shown in Figure 3,
based on the visualized saliency ascription in Section III-B1,
we quantitatively estimate visualized information in images
to fill image-dependent slots. However, many attributes such
as Material and Season, whose visualized saliency scores fall
below the threshold still provide valuable information to the
text. In addition, we ablate I-D training (w/o I-D loss) or T-
D training (w/o T-D loss). We observe that by adding only
the image without training the image-dependent module, the
model’s performance on T-D slots slightly decreased, dropping
from 88.98% to 88.35% in JGA. However, by adding only text
without training the text-dependent module, there is a marginal
decrease in T-D slots and the JGA scores only decrease
by 0.42%. These results indicate that the visual information
contained in the product images can assist in filling attribute
slots more accurately for the text-dependent task, while the
limited product attribute information in the textual descriptions
can only provide very limited help for the image-dependent
task.

D. Case Study

We conduct further analysis with two specific examples.
As shown in Figure 5, in MAVE, the sequential labeling
method is commonly employed. Here, images are typically

TABLE VIII: Ablation study of MuJo-SF on test set.

Methods T-D slots I-D slots
JGA SA JGA SA

MuJo-SF 88.98 99.40 81.73 94.29
-w/o cross attention 87.42 99.34 80.77 94.00
-w/o T-D loss - - 81.31 94.27
-w/o I-D loss 88.35 99.37 - -

TABLE IX: Performance of the Joint Slot Filling task on
MEPAVE dataset.

Tasks MEPAVE
JGA

Jo-SF (text-only) (ours) 88.64
MuJo-SF (multimodal) (ours) 90.73

utilized as supplementary information to facilitate the model in
extraction. In MuJo-SF, as shown in the green dotted box,
fine-grained image analysis is performed as a preliminary
step, followed by the presentation of a histogram displaying
saliency ascription results for different attributes. Based on
ascription results, image-dependent slots and text-dependent
slots are distinguished. For example, in Figure 5 (a), con-
ducting fine-grained analysis on the shoe image yields image-
dependent slots: Toecap, Closure, Upper Height, Color, and
Heel Height. Meanwhile, the product description provides
two text-dependent slots: Material and Style. Sometimes, the
information contained in product descriptions can be limited;
for instance, both the descriptions include only two attributes
each. Our MuJo-SF expands the product attribute values by
directly obtaining more information from images. However, as
depicted in Figure 5 (b), there’s a challenge: the skirt has two
colors, pink and white. Our experiments in Section III-B2 show
that the performance of multi-label classification for colors is
frustrating. As a result, we employ a single-label classification
model, which predicts the skirt’s color as white. We will solve
this issue in future research, aiming for subsequent models to
enhance the accuracy of filling multi-label attribute values.

E. Further Discussions

Effectiveness of the Novel Joint Slot Filling. To verify the
effectiveness of the new task, Joint Slot Filling, proposed by
us, we perform the Joint Slot Filling task on the MEPAVE
dataset. The results are shown in Table IX. We can observe
that our task yields promising results on the MEPAVE dataset,
indicating the feasibility of the joint slot filling task4.
Accuracy of Joint Prediction on Image-Dependent Module.
In the image-dependent joint slot filling module, we use Swin-
Transformer as the backbone and conduct joint prediction
on all image-dependent slots. To verify the accuracy of joint
prediction on multiple slots, we predict each slot separately
with the same backbone. The results are shown in Figure 6. In
this experiment, we use the Slot Accuracy metric to evaluate

4We adapt the MEPAVE dataset to fit our task. Please note that due to the lack
of annotations for images in MEPAVE, this experiment does not differentiate
between text-dependent slots and image-dependent slots. All slots are derived
from attributes annotated in product descriptions. The multimodal joint slot
filling approach involves integrating images as auxiliary information with
textual product descriptions. This experiment aims to validate the effectiveness
of our proposed joint slot filling task.
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TABLE X: Performance comparison of different training
mechanisms (OMFA denotes the method of one model fits
all slots).

Methods All slots T-D slots I-D slots
JGA JGA JGA

OMFA 70.12 - -
MuJo-SF 78.52 88.98 81.73

the performance. We can see that the joint prediction SA scores
are better than the independent results in almost all slots. We
guess it is because the joint prediction method can learn the
dependencies among different slots. We choose not to present
the results from the text-dependent joint slot filling module
in this experiment due to the notably high SA scores, most
of which exceed 99.1%. Such high scores result in minimal
differences between joint and independent predictions. We
speculate this may be due to the sparsity of the values in
text-dependent slots.
Effectiveness of our New Training Paradigm. In this paper,
we develop a new training mechanism for MuJo-SF, which
distinguishes between text-dependent and image-dependent
types. To verify the effectiveness of this training mechanism, we
compare it with another training method we proposed (denoted
as “one model fits all slots (OMFA)”), which unifies text and
image representations into one representation with attention
mechanism. The results are shown in Table X. Following

Fig. 7: Impact of different numbers of product attribute slots.

experimental analysis, the OMFA strategy exhibits an accuracy
of 70.12% across all 25 slots in terms of the JGA metric.
Subsequently, we conduct joint predictions for both text-
dependent slots and image-dependent slots in MuJo-SF, requir-
ing accurate predictions for both types of slots simultaneously.
This approach yields a JGA result of 78.52%. Compared
with our new training mechanism, the model’s performance
is notably underwhelming when using the OMFA mechanism.
There exists an 8.4% disparity between the results of OMFA
and our training paradigm. We speculate that this discrepancy
arises due to the rigor of the JGA metric, which demands
the model to predict all slot values with absolute accuracy.
Additionally, while the cross-attention mechanism is capable
of integrating text and image information, the contributions
from each source differ for various slots. This variation makes
it difficult to utilize a single, unified representation to fill all
slots at a high quality. This experiment indicates that how to
design effective strategies for text-image fusion to accurately
fill all text-dependent and image-dependent slots should be
further explored in future research for the MuJo-SF task.
Impact of the Size of the Product Attribute Library. Here
we will explore the impact of different numbers of product
attribute slots on the model. We randomly select subsets of
5, 10, 15, and 20 attribute slots, ensuring a ratio of 60%
text-dependent to 40% image-dependent slots, respectively (for
example, among the 5 attribute slots, there are 3 text-dependent
slots and 2 image-dependent slots), as well as the complete set
of 25 attribute slots for this experiment. We use JGA and SA
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metrics in this experiment. The results for text-dependent slots
and image-dependent slots are illustrated in Figure 7. Given that
different attribute slots include varying value candidates, we
perform three sets of experiments, randomly selecting different
subsets of slots for each. The experimental results are the
average across these three sets.

We can find that the number of attribute slots does not sig-
nificantly impact the results for the SA metric. This is because
the SA metric assesses the model’s average performance across
individual slots, and the model has already shown excellent
results on this metric. For the JGA metric, the model achieves
its highest result when only filling 5 attribute slots. As the
number of attribute slots increases, the JGA results indeed
tend to decline. However, as the number of slots increases, the
reduction tends to level off. We hypothesize that this is because
the JGA metric measures the model’s ability to accurately
predict the entire set of attribute values for a product; as
the number of attribute slots increases, predicting all slots
correctly becomes increasingly challenging for the model. Our
experiments indicate that for classification tasks, the scale of
the classifier (as indicated by the number of attribute slots in
our paper) has a discernible impact on the results measured
by the stringent JGA metric.

In future work, we will explore developing a larger-scale
multimodal product attribute value filling, enhancing the
model’s ability to unseen product categories, and exploring the
issue of missing attributes.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a novel task MuJo-SF, aiming
to combine the unique characteristics found in both product
descriptions and product images to jointly fill values into pre-
defined product attribute sets. This task presents two primary
challenges: First, it necessitates simultaneous extraction and
integration of text and image data, requiring sophisticated
processing for accurate product attribute determination. Second,
the strict Joint Goal Accuracy metric demands complete
prediction across all slots, leaving no margin for error or
bias toward any single attribute. The attribute values derived
from our task can be applied to the construction of knowledge
graphs, the refinement of recommendation systems, and the
improvement of product retrieval in these real-world scenarios.
To fulfill this new task, we develop a new dataset, MAVP,
containing 79k product description-image instances and 25 slots
across 5 domains. We present a strategy to fulfill visualized
saliency ascription, which aims to distinguish between text-
dependent and image-dependent attribute slots. For those
image-dependent attribute slots, we annotate the corresponding
attributes in images using distant supervisions. At last, we
present a new training paradigm and use some baselines to
benchmark the MAVP dataset. Our evaluation shows that the
baseline models achieve promising results on two metrics. The
new task leaves ample scope to promote future researches. For
example, in future work, we can try to incorporate additional
modules into the baseline model, such as an ensemble of image
object detection tasks, to facilitate explicit alignment between
fine-grained product image details and attribute slots.
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